Index
-
(not entails) §5.1.2
-
(if) 2nd item, Figure 5.1, 2nd item, 2nd item
-
(implies) Figure 5.1, 2nd item
-
(equivalence) Figure 5.1, 2nd item
-
(equals) §15.8
-
(not equal to) §15.8.2
-
(not) Figure 5.1, 2nd item
-
(and) Figure 5.1, 2nd item, 2nd item
-
(or) Figure 5.1, 2nd item
-
(exclusive-or) Figure 5.1, 2nd item
-
(prove) §5.3.2
-
(bottom) 3rd item
-
(entails) §15.3.2, §5.1.2
-
(rewritten as) §15.7.1
-
0–1 loss 1st item
-
search §3.6.1, §3.7.2
-
abduction §5.8, §5.8
-
abductive diagnosis §5.8
-
abilities 5th item
-
ableist §12.6
-
ABox 2nd item
-
absolute loss 2nd item
-
absorbing state §12.5
-
abstraction §1.6.4
-
abundant homogenous data 2nd item
-
accident §13.10
-
accountability §18.3
-
accuracy 1st item, §7.2.1
-
achievement goal 1st item, 1st item
-
acting intelligently §1.1
-
action §2.1, §6.1
-
activation function §7.3.2, §8.1
-
active learning item Online and offline
-
active sensor 2nd item, §5.4
-
acts §1.1
-
actuator 2nd item
-
acyclic directed graph (DAG) §3.3.1
-
acyclic knowledge base §5.7
-
Adam (optimizer) Table B.2, §8.2.3
-
Adam (robot scientist) §15.10
-
adaptive importance sampling §9.7.5
-
additive independence §12.1.2
-
additive utility §12.1.2
-
adjective 2nd item
-
admissible
-
adversarial
-
aerodynamics §1.2.1
-
agent §1.1, §1.3, §2.1, §2.1
-
aggregator §17.3.1
-
AGI, see artificial general intelligence
-
AI §1.1
-
AI Act, see Artificial Intelligence Act
-
AI ethics §18.7
-
AIPython (aipython.org) Example 2.6, §4.11, New to This Edition
-
AIspace §18.6
-
algebraic variable §4.1.1
-
algorithm
-
algorithm portfolio §4.11, §4.6.2
-
algorithms
-
bottom-up
-
conflict 1
-
definite clause 1
-
negation-as-failure 1
-
branch-and-bound 1
-
conflict
-
constraint satisfaction problem (CSP)
-
branch-and-bound 1
-
depth-first search 1
-
genetic algorithm 1
-
local search 1
-
variable elimination 1
-
Datalog
-
top-down proof procedure 1
-
decision network
-
depth-first search 1
-
variable elimination 1
-
definite clause
-
depth-first
-
domain splitting 1
-
generalized arc consistency 1
-
learner
-
k-means 1
-
boosting 1
-
decision tree 1
-
expectation maximization (EM) 1
-
gradient-boosted trees 1
-
logistic regression
-
stochastic gradient descent 1
-
neural network
-
Conv2D 1
-
dense linear function 1
-
dropout 1
-
ReLU 1
-
sigmoid 10
-
stochastic gradient descent 16
-
stochastic gradient descent
-
logistic regression 1
-
neural network 16
-
Markov decision process (MDP)
-
asynchronous value iteration 1
-
policy iteration 1
-
value iteration 1
-
multiple-path pruning 1
-
negation-as-failure
-
neural network
-
planning
-
probabilistic inference
-
depth-first 1
-
Gibbs sampling 1
-
likelihood weighting 1
-
MCMC 1
-
particle filtering 1
-
recursive conditioning 1
-
variable elimination 1
-
reinforcement learning
-
model-based 1
-
Q-learning 1
-
SARSA 1
-
with generalization 1
-
with linear function approximation 1
-
stochastic policy iteration 1
-
search
-
depth-first 1
-
game tree 1
-
iterative deepening 1
-
minimax with – pruning 1
-
stochastic gradient descent
-
logistic regression 1
-
neural network 16
-
top-down proof procedure
-
conflict 1
-
Datalog 1
-
definite clause 1
-
negation-as-failure 1
-
value iteration
-
alignment problem §18.3
-
Allais Paradox §12.1.1
-
alpha–beta (–) pruning §14.3.1
-
AlphaGo §14.10
-
AlphaZero §14.10, §14.7.3
-
alternating least squares Example 17.3
-
analysis 1st item
-
Analytical Engine §1.2
-
annealing §4.6.3
-
answer §15.4.1, §5.3.1, §5.3.2, §5.6.2
-
any-conflict algorithm §4.6.3
-
any-space algorithm 4th item
-
anytime algorithm §1.5.4, §12.5.2, 1st item
-
aperiodic Markov chain §9.6.1
-
application of substitution §15.5.1
-
applications of AI §1.1, §1.4
-
approximate inference item Approximate inference, §9.7
-
approximately optimal solution item Approximately optimal solution
-
arc 2nd item
-
arc consistent §4.3, §4.8.1
-
area under the ROC curve §7.2.3
-
argument 5th item, §5.7.1
-
Aristotelian definition §16.2.2
-
array §A.3
-
Arrow’s impossibility theorem Proposition 14.1
-
art §19.3
-
artificial general intelligence §18.3, §19.2
-
artificial intelligence §1.1
-
Artificial Intelligence Act §18.8
-
ask item Step 4, §5.3.1
-
ask-the-user §5.4
-
askable atom §5.4
-
assertional knowledge base 2nd item
-
assignment §4.1.1
-
assisted action §18.3
-
assisted cognition §18.3
-
assisted perception §18.3
-
assistive technology §18.3
-
assumable §5.6.2, 2nd item
-
assumption-based truth maintenance system §5.12, §5.6.4
-
asymptotic complexity §1.6.2, §3.5.2
-
asynchronous value iteration §12.5.2
-
ATMS, see assumption-based truth maintenance system
-
atom 5th item, §5.1.1, 1st item
-
atomic
-
atoms-to-bits §18.1, 2nd item
-
attention
-
attribute §16.1.1
-
auction §14.6
-
AUROC, see area under the ROC curve
-
autoencoder §8.6.1
-
autoML §7.9, §8.3
-
autonomous
-
average reward item Average reward
-
axiom item Step 4, item Step 3, §5.1.2
-
axiomatizing the domain item Step 4, item Step 3
-
axioms of rationality §12.1
-
backdoor criterion §11.3.1
-
backpropagation §8.1.1, §8.1.1
-
backtracking §3.5.2
-
backward induction §14.3
-
backward search §3.8.1
-
bag item Data, 3rd item
-
bag-of-words §17.3.3, §9.6.6
-
bagging 1st item
-
bandit §13.5
-
base learner 1st item
-
base-level algorithms §7.5
-
Basic Formal Ontology §16.6
-
batch §7.3.2
-
Bayes classifier §10.2.2
-
Bayes’ rule §10.1, Proposition 9.1
-
Bayesian
-
beam search §4.7
-
behavior §1.1
-
belief §1.6.2, 6th item
-
Bell number §17.4
-
best response §14.4
-
best-first search §3.6
-
beta distribution §10.2.1
-
BFO, see Basic Formal Ontology
-
bias
-
bias–variance trade-off 2nd item
-
bidirectional search §3.8.1
-
bigram model §9.6.6
-
binary
-
binning 3rd item, §7.3.2
-
binomial distribution §10.2.1
-
biology item Biology, §8.5.4
-
bipartite graph 3rd item
-
bit §10.2.4, §7.2.1
-
blame attribution problem 1st item
-
blocks §11.1.2
-
body
-
Boltzmann distribution 3rd item, §4.6.3, §4.7
-
Boolean
-
boosting §7.5.1
-
bot §1.3, §2.1
-
bottom 3rd item
-
bottom-up proof procedure §5.3.2
-
bounded above zero §3.6.1
-
bounded arc costs §3.5.4
-
bounded rationality 2nd item, §19.2
-
branch-and-bound
-
branch-and-bound search §3.6.2
-
branching factor §3.3.1
-
breadth-first search §3.5.1
-
bucket elimination, see variable elimination
-
burn-in §9.7.7
-
canonical representation §12.1.2, §12.1.2, §15.8.1, §9.3.3, §9.3.3
-
canyon §8.2
-
cardinal item Optimal solution
-
case analysis §4.4
-
catastrophic forgetting §13.9.1, §7.3.2
-
categorical
-
causal §2.1.1
-
causality §1.2, Chapter 11, §5.9, §5.9
-
chain rule 2nd item, §9.1.2
-
chance node 2nd item
-
channel 3rd item
-
characteristic function item relations, §16.2
-
CHAT-80 §1.2
-
ChatGPT Example 1.2, §18.3
-
checkers §1.2
-
chess §14.10
-
child §3.3.1
-
choose 2nd item, §3.4, §5.3.2
-
Church–Turing thesis §1.2
-
Cicero §14.10
-
citation matching §17.4
-
clarity principle §4.1.1, 2nd item
-
Clark normal form §15.9
-
Clark’s completion §15.9, §5.7
-
class §10.2.2, §16.2, 2nd item
-
classification item Task, §7.2
-
clause 2nd item
-
climate change §18.6
-
closed list, see explored set
-
closed-world assumption §5.7
-
clustering §10.3
-
CNF, see conjunctive normal form
-
CNN, see convolutional neural network
-
cognitive science §1.2.1
-
cold-start problem §17.2.1
-
collaborative filtering §17.2.1
-
collective classification §17.3.2
-
collusion §17.3.2
-
combinatorial auction §18.6
-
command §13.4.1, §2.1, §2.1.3, §2.2
-
common sense §1.1.1, §18.3, §19.3
-
competitive agents 2nd item
-
compile §9.5.3
-
complement (activation function) §8.1
-
complements 1st item
-
complete
-
completeness of preferences Axiom 12.1
-
complex preference 2nd item
-
complexity §3.5.2
-
compound proposition 2nd item
-
compress §8.6.1
-
computational
-
concept §16.3.1
-
conceptualization §15.2, §16.3, item Step 2
-
condition §4.1.2
-
conditional
-
conditionally independent §9.2
-
Condorcet paradox Example 14.17
-
conflict §4.6.1, §5.6.2
-
conflicting variable §4.6.3
-
confounder §11.3
-
conjugate prior §10.2.1
-
conjunction 2nd item
-
conjunctive normal form Example 5.22
-
consequence set §5.3.2
-
consistency-based diagnosis §5.6.3, §5.6.3
-
consistent heuristic §3.7.2
-
constant 2nd item
-
constrained optimization problem §4.8
-
constraint §18.6, §4.1.2
-
constraint satisfaction problem (CSP) §4.1.3
-
branch-and-bound 1
-
depth-first search 1
-
domain splitting 1
-
generalized arc consistency 1
-
genetic algorithm 1
-
local search 1
-
planning §6.4
-
variable elimination 1
-
context §8.5.1, §8.5.1
-
context-free grammar §15.7.1
-
context-specific independence §9.2, §9.3.3
-
contingent attribute 2nd item
-
continuant 2nd item
-
continuous §2.3.1, §2.3.1, §4.8.3
-
continuous bag of words (CBOW) 1st item
-
controller §14.2.1, §2.1, §2.1.1
-
Conv2D
-
convolution mask §8.4
-
convolutional
-
cooperate §14.7.2
-
cooperative agents 1st item
-
cooperative games §14.10
-
cooperative system Example 5.28
-
coordinate §14.7.2
-
coordination Example 14.12
-
corner cases §18.3
-
corpus §8.5
-
cost §3.3.1, §4.8, §7.2.3
-
counterfactual
-
counterfactual reasoning §11.5
-
CPT, see conditional probability table
-
credit assignment problem 1st item
-
cross entropy §7.2.1
-
cross validation §7.4.3, §8.3
-
crossover §4.7, §4.7
-
crowd sourcing §17.3.2
-
cryptocurrency §18.6
-
CSP, see constraint satisfaction problem
-
culture item Culture
-
cumulative probability distribution §9.7.1
-
cumulative reward §12.5
-
curse of dimensionality item Curse of dimensionality
-
cut 2nd item, §7.3.2
-
cut-set §3.8.1
-
Cyc §16.3
-
cycle §3.3.1
-
d-separated §11.1.2
-
d-separation §11.1.2
-
DAG (directed acyclic graph) §3.3.1
-
data Chapter 10, Chapter 7, item Data
-
Datalog §15.4
-
datatype property 3rd item
-
DBN, see dynamic belief network
-
DCG, see definite clause grammar
-
dead reckoning §2.3.2
-
death by GPS §3.9
-
debugging
-
decision
-
decision tree §1.2, §12.2, 2nd item, §14.2.2, §7.3.1, §9.3.3
-
decision tree learner
-
decision-theoretic planning §1.2, §12.5.4
-
decoder §8.5.1, §8.5.2
-
deduction §5.3.2, §5.8
-
deep §8.1
-
Deep Blue §14.10
-
Deep Space One §5.13
-
default §5.7.1
-
deficiency 2nd item
-
definite clause 1st item, 2nd item
-
definitive prediction 1st item
-
delay §15.8.2
-
delivery robot §1.4.1
-
dematerialization §18.1, §18.6, 2nd item
-
DENDRAL §1.2
-
denoise §8.6.3
-
denote item Step 2, §15.3.1
-
dense linear function §8.1.1
-
dependent continuant 3rd item
-
deployed cases are like training cases 4th item
-
deployment §19.1, item Measuring success
-
depth bound §3.5.3
-
depth of neural network §8.1
-
depth-bounded search §3.5.3
-
depth-first
-
branch-and-bound §3.6.2
-
CSP solver
-
decision network optimization
-
probabilistic inference
-
search §3.5.2
-
derivation §15.5.4, §5.3.2, §5.3.2
-
derivative §4.8.3
-
derived §5.3.2
-
description logic §16.3.1
-
descriptive theory §12.1.3
-
design §1.1, §5.8
-
design-time computation §1.5.9
-
desire 6th item
-
determinism 3rd item
-
deterministic 1st item
-
dev (development) set §7.4.3
-
diagnosis §5.8
-
diagnostic assistant §1.4.2
-
dictator §14.6
-
dictionary §9.7.6
-
difference list §15.7.1
-
differentia 2nd item
-
diffusion model §8.6.3
-
Digital Services Act §18.8
-
Dijkstra’s algorithm §3.11
-
dimension §8.6.1
-
dimensionality reduction §8.6.1
-
Diplomacy §14.10, §14.10
-
direct cause §11.1
-
directed acyclic graph §3.3.1
-
directed graph §3.3.1
-
Dirichlet distribution §10.2.1, 5th item
-
discount §12.5
-
discount factor item Discounted reward
-
discounted reward item Discounted reward
-
discrete
-
discretization §9.1.1, §9.6.5
-
disintermediation §18.1, §18.4, 3rd item
-
disjoint union §9.5.1
-
disjunction 2nd item, §5.6.1
-
disjunctive normal form Example 5.22
-
distribution law §9.5
-
distributional shift 5th item
-
DNF, see disjunctive normal form
-
do
-
document §9.6.6
-
domain item functions, 1st item, §16.1.1, §16.2.1, §4.1.1, §7.2, §9.1.1
-
dominant strategy 1st item
-
dominated strategy §14.4.1
-
dominates §7.2.3
-
don’t-care non-determinism 1st item
-
don’t-know non-determinism 2nd item
-
dot product §9.6.3
-
down-sample 5th item
-
DPLL algorithm §5.2.1
-
dropout §8.3
-
DSA, see Digital Services Act
-
dynamic
-
dynamic programming §1.2, §3.8.2, §8.1.1, §9.5.2
-
dynamics §1.5.6, 3rd item, 5th item, 2nd item, 2nd item
-
early stopping §7.4.3
-
echo chambers §17.5
-
ecological sustainability §18.6
-
economically efficient mechanism 2nd item
-
effect 2nd item, §6.1
-
effectively computable function §1.2
-
effector 2nd item
-
elimination ordering §4.5
-
EM, see expectation maximization
-
embedding
-
embodied §19.3
-
empirical frequency §7.2.2
-
empirical systems §1.1
-
empty body 2nd item
-
encoder §8.5.1, §8.5.2
-
encoder–decoder recurrent neural network §8.5.2
-
encoding §8.6.1
-
endogenous variable §9.3.3
-
engagement §17.5, §17.5
-
engineering goal §1.1
-
ensemble learning §7.5
-
entails §5.1.2
-
entity §1.5.3, 1st item, §16.3.2, Chapter 17
-
entropy §7.2.1, §7.2.1, §7.3.1
-
environment §1.3
-
epistemology §1.2.1, §9.1
-
epoch §7.3.2
-
equality §15.8
-
equilibrium distribution §9.6.1
-
equivalence 2nd item
-
ergodic Markov chain §9.6.1
-
error item Measuring success
-
error function §4.8
-
ethics §18.7
-
Euclidean distance §3.7.2
-
evaluate (learner) item Measuring success
-
evaluation function §14.3.1, §4.6.1
-
event 3rd item
-
evidence Chapter 10, §9.1.2
-
evidential model §5.9
-
evolutionary algorithm §13.2, §13.9.2
-
exact inference item Exact inference
-
example Chapter 7
-
exchangeability §17.3.1
-
exclusive-or 2nd item, Example 7.13
-
existence 4th item
-
existence uncertainty §17.4
-
existentially quantified variable 2nd item, 2nd item
-
exogenous variable §9.3.3
-
expanding a path §3.4
-
expectation 1st item
-
expectation maximization (EM) §10.3.2, §10.4.1, §17.3.2
-
expected
-
experience §13.4
-
expert §1.2
-
explainability §18.3
-
explainable AI §1.6.2, §18.3, §7.7
-
explained away Example 5.32, Example 9.13
-
explanation §11.6, §5.8
-
exploit 1st item
-
exploration §13.5
-
explore 2nd item
-
explore–exploit dilemma 3rd item
-
explored set §3.7.2
-
exponentially-decaying rolling average §A.1
-
extension §4.1.2
-
extensional set §16.2
-
extensive form of game §14.2.2, 4th item
-
external knowledge source 3rd item
-
external validity §7.7
-
in §3.6.1
-
facial
-
fact 1st item, 2nd item
-
factor §A.3, §9.3.3
-
factored finite state machine §2.1.3
-
factored optimization problem §4.8
-
factored representation §2.1.3
-
factorization §9.3
-
failure 2nd item, §5.7.2
-
fairness §1.6.1, §12.6, §15.6.1, §18.3, 1st item
-
false §15.3.1, §5.1.2
-
false-negative error item Probable solution, §5.5.2, §7.2.3
-
false-positive error item Probable solution, §5.5.1, §5.5.1, §7.2.3
-
false-positive rate 2nd item
-
fault §5.6.3
-
feasible §4.8
-
feature §1.5.3, Chapter 4, §7.2
-
feature engineering §13.9.1, §13.9.1, §7.3.2, Chapter 8
-
feature selection §7.4.2
-
feature-based representation of actions §6.1.3
-
feedback item Feedback
-
feedforward neural network §8.1
-
fictitious play §14.7.2
-
FIFO §3.5.1
-
filter §8.4
-
filter bubbles §17.5
-
filtering 1st item, §9.6.2, §9.6.3
-
finite failure §5.7.2
-
finite horizon 2nd item
-
finite state controller §2.1.3
-
finite state machine §2.1.3
-
first-order predicate calculus §15.6
-
first-order weighted logical formula 2nd item
-
fitness proportional selection 1st item
-
fixed point item Fixed Point
-
flat structure 1st item
-
flatten 7th item
-
floundering goal 2nd item
-
flying machines §1.2.1
-
fold 1st item
-
for all () 1st item
-
forward
-
found a solution §3.4
-
foundation models §8.9
-
frame
-
frames §1.2
-
framing effect §12.1.1
-
free parameters §9.2
-
fringe §3.4
-
front-door criterion §11.3.3
-
frontier §3.4
-
fully convolutional neural network 7th item
-
fully expressive §17.2.2
-
fully observable 1st item, §14.3
-
function item functions
-
functional gradient boosting §7.5.1
-
functional property §16.2.1, 1st item
-
fuzzy terms 2nd item
-
gambling §9.1
-
game
-
game tree search 4th item
-
GAN, see generative adversarial network
-
GDPR, see General Data Protection Regulation
-
General Data Protection Regulation §18.8
-
general game playing §14.10
-
generalization §16.2, item Measuring success
-
generalized additive independence §12.1.2
-
generalized answer clause §15.5.4
-
generalized arc consistency (GAC) §4.3
-
generate and test §4.2
-
generative
-
generic search algorithm §3.4
-
genetic algorithm §4.7
-
genus 1st item
-
Gibbard–Satterthwaite theorem §14.6
-
Gibbs distribution 3rd item, §4.6.3, §4.7
-
Gibbs sampling §9.7.7
-
gig economy §18.4
-
global optimum §4.6.1, §4.8.2
-
global positioning system (GPS) §2.3.2, §9.8
-
Glorot uniform initializer §8.2.4
-
Go §14.10
-
goal 4th item, 1st item, 6th item, 5th item, §3.3.1, §6.1.4, §6.2
-
Google §17.3.3, §9.6.1, Example 9.38
-
governance §18.8
-
GPT §15.7.4
-
GPT-3 Example 1.2, Figure 8.15, §8.5.5
-
GPU §8.5.1
-
gradient descent §4.8.3, §7.3.2
-
gradient-boosted trees §1.2, §19.1, §7.5.2
-
grammar §15.7.1
-
granularity §9.6.5
-
graph §3.3.1
-
graphical models §1.2, §9.3.3
-
graphics processing units §8.5.1
-
greedy 2nd item
-
green information technology §18.6
-
ground expression §15.3
-
ground instance §15.5.1, §15.5.2, §17.3.1
-
ground truth §7.2.1, 1st item
-
grounding §17.3.1
-
guaranteed bounds 1st item
-
, see heuristic function
-
Hanabi §14.10
-
hard clustering §10.3
-
hard constraint Chapter 4, §4.1.2
-
HCI §18.3
-
head §16.1.3, 2nd item
-
help system Example 10.5, Example 9.36
-
Herbrand interpretation §15.5.2
-
heuristic 1st item
-
hidden
-
hidden layer §8.1
-
hierarchical
-
high stakes 1st item
-
hill climbing §4.6.1
-
history 3rd item, §13.4, §2.1.1
-
HMM, see hidden Markov model
-
Hoeffding’s inequality §10.2.1, §9.7.1
-
holdout §7.4.3
-
horizon §1.5.2, §2.2, §6.4
-
Horn clause §5.6.1
-
human-centred AI §18.3
-
human-compatible AI §18.3
-
human-in-the-loop §1.1, §1.3, §18.3
-
human–computer interaction §18.3
-
hybrid system §2.3.1
-
hyperbolic tangent 2nd item
-
hyperparameter §7.4.2, §7.4.3
-
hyperplane §7.3.2
-
i.i.d., see independent and identically distributed
-
identifiable §11.2
-
identifier §16.1.2
-
identity §15.8.1, 3rd item
-
ImageNet §1.2
-
immaterial entity 5th item
-
imperfect data item Imperfect data
-
imperfect information §12.4
-
implication 2nd item
-
importance sampling §9.7.4, §9.7.5
-
incoming arc §3.3.1
-
inconsistent §5.6.1
-
incorrect answer §5.5.1
-
incremental gradient descent §7.3.2
-
indefinite horizon 3rd item, §12.5
-
independent and identically distributed (i.i.d.) §10.2
-
independent continuant 3rd item
-
independent variables §9.2
-
indicator variable 1st item, 1st item, §7.3.2, §8.2.4, §8.5.1
-
indifferent §12.1.1
-
individual §1.5.3, 1st item, 1st item, 1st item, §4.7
-
individual–property–value triple §16.1.1
-
induction §5.8
-
inductive bias item Bias
-
inference §5.3.2
-
infinite horizon 4th item, §12.5
-
influence diagram §12.3.1
-
information
-
inheritance §16.2.1
-
initial part of a path §3.3.1
-
initial-state constraint 4th item
-
innate §1.2
-
input
-
insects 2nd item
-
instance §15.4.1, §15.5.1, §15.5.1
-
instrumental variable §11.4
-
insurance Example 12.1
-
integrity constraint §5.6.1
-
intelligence §1.1
-
intended interpretation §15.2, item Step 3, §16.3, item Step 2, §5.1.2
-
intension §4.1.2, Example 4.7
-
intensional set §16.2
-
intention 6th item
-
interactivity dimension §1.5.9, §19.2
-
internal validity §7.7
-
internationalized resource identifier §16.1.2, §16.3
-
interpolation item Interpolation and extrapolation
-
interpretability §18.3
-
interpretation §15.3.1, §5.1.2
-
intersection §A.4
-
intervention Chapter 11, §5.9
-
inverse graph 2nd item
-
inverse reinforcement learning §19.3
-
IRI, see internationalized resource identifier
-
is_a Example 16.4
-
island §3.8.1
-
island-driven search §3.8.1
-
item embedding item Add latent properties
-
iterative best improvement §4.6.1
-
iterative deepening §3.5.3
-
iterative soft-thresholding §7.4.2
-
Java §16.2.1
-
join §A.4, §4.5
-
joint probability distribution §9.1.1, §9.3
-
-fold cross validation §7.4.3, §8.3
-
k-means §10.3.1
-
Kaggle §7.9
-
Keras §B.2, §8.1.1, §8.2.2, §8.2.3, §8.2.4, §8.9, Example 8.3
-
kernel §8.4
-
key embedding 2nd item
-
keys
-
knowledge §1.1.1, §1.6.2
-
knowledge graph §17.3.4
-
loss 1st item
-
-
-
loss 4th item
-
lambda calculus §1.2
-
landmark 1st item
-
language §15.7.1
-
language model
-
Laplace smoothing §10.2.1, §10.2.1, §7.4.1
-
large language model §15.7.4, §18.2, §8.5.5, §9.7.2
-
lasso §7.4.2
-
latent
-
law of large numbers §9.7.1
-
Laws of Robotics §18.7
-
layer §8.1
-
LDA, see latent Dirichlet allocation
-
leaf §3.3.1
-
learning §1.2, Chapter 10—§10.8, Chapter 13—§13.13, §17.2.1—§17.7, §2.3.3, Chapter 7—§7.10
-
least fixed point item Fixed Point
-
least-cost search §3.5.4
-
leave-one-out cross validation §7.4.3
-
lethal autonomous weapon systems §18.10
-
level of abstraction §1.6.4
-
lifelong learning item Lifelong learning
-
LIFO §3.5.2
-
lifted inference §17.1
-
lifted model §17.3.1
-
LightGBM §B.1, §7.5.2, §7.9
-
likelihood 1st item, §9.1.2
-
likelihood weighting
-
linear
-
linear rule for differentiation 1st item
-
linearly separable §7.3.2
-
linked data §16.6
-
Linnaean taxonomy §16.2.2
-
list Example 15.27
-
literal 2nd item, §5.7
-
liveness §1.6.1
-
local optimum §4.6.1, §4.8.2
-
local search §4.6, §4.6
-
locality 1st item
-
localization §9.6.2
-
log loss §7.2.1, §7.3.2
-
log-likelihood 1st item
-
log-linear model §9.3.3, §9.3.3
-
logic §1.2
-
Logic Theorist §1.2
-
logical
-
logically follows §5.1.2
-
logistic
-
logistic regression
-
logit §9.3.3
-
long short-term memory (LSTM) §8.5.3
-
loop pruning §3.7.1
-
loss item Measuring success, §7.2.1
-
loss function §4.8
-
lottery §12.1.1
-
low stakes 1st item
-
lowest-cost-first search §3.5.4, §3.5.4
-
LSTM §8.5.3
-
m-graph §11.2
-
machine learning, see learning
-
maintenance goal 1st item, 2nd item
-
MAP model §10.1
-
mapping item functions
-
marginalizing §9.5, §9.5
-
Markov
-
matched RNN §8.5.2
-
material entity 5th item
-
matrix §8.5.1
-
max-pooling 6th item
-
maximization 2nd item
-
maximum a posteriori probability model §10.1
-
maximum likelihood estimate §7.2.2
-
maximum likelihood model §10.1
-
MCMC, see Markov chain Monte Carlo
-
MDL, see minimum description length
-
MDP, see Markov decision process
-
mean §7.2.2
-
mean log loss §7.2.1
-
measure §9.1.1
-
measure of improvement item Measure of improvement
-
measurement model §12.6
-
measuring success item Measuring success
-
mechanism §14.1, §14.6
-
mechanism design §14.6
-
median §7.2.2
-
mediating variable §11.3.3, §11.3.3
-
memory §2.1.2, §8.5.2
-
metadata §16.4
-
MGU, see most general unifier
-
micromobility §18.5
-
min-factor elimination ordering 1st item
-
mind map 1st item
-
minibatch §7.3.2
-
minimal
-
minimax §14.3.1, §14.7.1
-
minimax with – pruning
-
minimum deficiency elimination ordering 2nd item
-
minimum description length (MDL) §10.2.4
-
misinformation §17.3.2
-
missing at random (MAR) §11.2
-
missing completely at random (MCAR) §11.2
-
missing data §10.2.2, §10.4.2, item Imperfect data
-
missingness graph §11.2
-
MLN, see Markov logic network
-
MNIST Example 8.3
-
mode §10.2.1, §7.2.2
-
model §1.6.4, §5.1.2, item Representation, §7.1
-
model averaging §10.2
-
model-based reinforcement learning
-
modified policy iteration §12.5.3
-
modular
-
modularity §1.5.1, §1.5.1
-
modus ponens §5.3.2
-
momentum Table B.2, §8.2.1
-
money pump §12.1.1
-
monitoring §9.6.2, §9.6.3
-
monotone restriction §3.7.2
-
monotonic logic §5.7.1
-
Monte Carlo
-
moral §18.7
-
most general unifier §15.5.1, §15.5.3
-
most improving step §4.6.3
-
multi-armed bandit §13.5
-
multi-head attention 1st item
-
multi-task learning 4th item
-
multiagent decision network §14.2.3
-
multiagent reasoning 3rd item, Chapter 14—§14.11
-
multinomial
-
multiple-path pruning §3.7.2, §3.7.2
-
multiset item Data
-
mutex constraint §6.4.1
-
MYCIN §1.2
-
myopic 2nd item
-
n-gram §9.6.6
-
naive baseline §7.2.2
-
naive Bayes classifier §10.2.2, §10.3.2, Example 9.36
-
Nash equilibrium §14.4
-
natural kind §10.2.2, §16.2
-
natural language processing §15.7, §9.6.6
-
nature §1.3, 1st item, §14.1
-
negation 2nd item, §5.6.1
-
negation as failure §15.9, §15.9, §5.7, §5.7.2
-
negatively 2nd item
-
neighbor §3.3.1
-
Netflix Prize §17.2.1
-
neural
-
neural language model §8.5
-
neural network §11.6, Chapter 8—§8.10
-
convolutional (CNN) §8.4
-
dense linear function
-
recurrent §8.5.2
-
stochastic gradient descent
-
neural networks Chapter 8
-
neuro-symbolic AI Chapter 17
-
neuroevolution §13.12, §13.2
-
neuron §1.2, Chapter 8
-
no answer §5.3.1
-
no-forgetting
-
no-free-lunch theorem §18.2, §7.6
-
node 1st item
-
noise item Imperfect data, 3rd item
-
noisy observation §9.6.2
-
noisy-or 1st item, Example 17.10, §9.3.3, §9.3.3, Example 9.38
-
non-cooperative games §14.10
-
non-deterministic choice §3.4
-
non-deterministic procedure 2nd item
-
non-monotonic logic §5.7.1
-
non-planning agent 1st item
-
non-serial dynamic programming §4.11
-
non-terminal symbol §15.7.1
-
nonlinear function §8.1
-
nonlinear planning §6.5
-
nonparametric distribution §9.1.1
-
normal-form game §14.2.1
-
normalize §8.2.4
-
normative theory §12.1.3
-
noun 2nd item
-
2nd item
-
-complete 2nd item
-
-hard 2nd item
-
(sharp-NP) §9.4
-
number of agents dimension §1.5.8
-
number uncertainty §17.4
-
NumPy §8.5.1
-
object §1.5.3, 1st item, 3rd item, §16.1.1, §16.3.2
-
object-oriented languages §16.2.1
-
objective function 2nd item
-
observation 2nd item, §5.4, §9.1.2
-
occurrent 2nd item
-
occurs check §15.6.1
-
Ockham’s razor §7.4.2, §7.6
-
odds 2nd item
-
off-policy learner §13.7
-
offline 1st item
-
offspring §4.7
-
omniscient agent §4.1.1
-
on-policy learner §13.7
-
one-dimensional kernel §8.4
-
one-hot encoding §7.3.2, §8.1, §8.2.4, §8.5.1
-
one-point crossover §4.7
-
online 2nd item
-
ontology §16.3, 3rd item, §5.4, §9.1
-
open §15.3.2
-
open-world assumption §5.7
-
optimal
-
optimal solution item Optimal solution, §3.2
-
optimality criterion 3rd item
-
optimism in the face of uncertainty 1st item
-
optimization problem §4.8
-
oracle 2nd item, 2nd item
-
orders of magnitude reasoning 2nd item
-
ordinal item Optimal solution
-
organizations §1.1.2
-
outcome §12.1.1, §12.2, §14.2.1
-
outgoing arc §3.3.1
-
outlier Example 7.3
-
output Chapter 7
-
output layer §8.1
-
over-parametrized §7.3.2
-
overconfidence §7.4
-
overfitting §10.1, Example 10.1, §7.4
-
overflow §7.3.2
-
OWL §16.3, §16.3.1, §16.3.1
-
PAC, see probably approximately correct
-
padding 2nd item
-
pair item tuples
-
parameter sharing §17.3.1, 2nd item, §8.5.2, §9.6.1
-
parameterized random variable §17.3.1
-
parametric distribution §9.1.1
-
paramodulation §15.8.1
-
parent
-
partial derivative §4.8.3
-
partial observation §9.6.2
-
partial restart §4.6.5
-
partial-order planner
-
partial-order planning §6.5
-
partially observable 2nd item, §12.5.5
-
particle §9.7.6
-
particle filtering §9.7.6
-
partition function §10.1, §9.3.3
-
passive sensor 2nd item
-
past experience 3rd item
-
path §3.3.1
-
pattern database §3.6.3, §3.8.2
-
payoff matrix Example 14.1
-
percept §13.4.1, §2.1
-
perceptron §1.2
-
perdurant 2nd item
-
perfect information §14.3
-
perfect rationality 1st item
-
perfect-information game §14.2.2, §14.7.1
-
periodic Markov chain §9.6.1
-
personalized recommendations §17.2.1, §17.2.1
-
philosophy §1.2.1
-
physical symbol system §1.6.4
-
piecewise constant function §7.5
-
piecewise linear function §7.5
-
pixel §2.1
-
plan §6.2
-
planner §6.2
-
planning §1.2, §6.2—§6.9
-
plate §17.3.1
-
Pluribus §14.10
-
point estimate §7.2.1, 3rd item
-
poker §14.10
-
policy §12.2.1, §3.8.2
-
policy iteration §12.5.3
-
policy search §13.2
-
polyadic decomposition §17.2.2
-
POMDP, see partially observable Markov decision process
-
pooling 6th item
-
population Chapter 17, §4.7, §9.7.6
-
portfolio §4.6.2
-
positional encoding 3rd item
-
positively 2nd item
-
possible action 1st item
-
possible world §12.2, §12.3.2, §9.1.1
-
posterior distribution §9.3.1, §9.4
-
posterior probability §9.1, §9.1.2, §9.1.2
-
pragmatics item Pragmatics
-
precision §7.2.3
-
precondition 1st item, §6.1, §6.1.2
-
precondition constraint 1st item
-
predicate
-
predictive policing §7.7
-
predictor §7.2, §7.2.1, §7.3
-
preference 4th item, §12.1.1, §4.8
-
preposition 3rd item
-
primitive
-
prior §7.4.1
-
prisoner’s dilemma §14.4
-
privacy §17.2.1
-
privacy-by-design §18.7
-
probabilistic
-
probabilistically
-
probability §9.1—§9.11
-
probable solution item Probable solution, item Probable solution
-
probably approximately correct (PAC) §1.6.3, §10.2.1, §9.7.1
-
process 4th item, 3rd item
-
project §A.4, §4.5
-
Prolog §1.2, §15.3, §5.3.2
-
proof §5.3.2
-
proof procedure
-
conflict
-
Datalog
-
definite clause
-
negation-as-failure
-
Example 16.3
-
property §1.5.3, §16.1.1, §16.1.1, 3rd item, Chapter 17
-
proposal distribution §9.7.5
-
proposition §1.5.3, 2nd item, Chapter 5, §5.1.1, §5.1.1
-
propositional
-
prospect theory §12.1.1, §12.1.3
-
Protégé §16.3.1
-
protein folding §8.5.4, §8.7
-
proved §5.3.2
-
provenance §16.4
-
pruning belief network §9.5.3
-
pseudo-examples §7.4.1
-
pseudocount §10.2.1, §10.2.2, §7.4.1
-
psychology §1.2.1
-
punishment §12.5
-
pure literal §5.2.1
-
pure strategy §14.4
-
purposive agent §1.3, §2.1
-
Python §16.2.1
-
PyTorch §B.2, §8.1.1
-
Q function
-
Q-learning §1.2, §13.4.1, 5th item
-
qualitative
-
quality-adjusted life year (QALY) §12.6
-
quantitative reasoning §2.3.1
-
query
-
query embedding 1st item
-
querying the user §5.4
-
queue §3.5.1
-
random
-
randomized clinical trial §11.6
-
randomized controlled trial §11.3
-
range item functions, §16.1.1, §16.2.1
-
ranking §17.2.1
-
rational §12.1.1
-
rational agent §12.1
-
RDF §16.3
-
RDFS (RDF schema) §16.3
-
reactive system §2.3.2
-
reasoning Chapter 9
-
reasoning with uncertainty Chapter 9
-
recall 1st item
-
receiver operating characteristic space §7.2.3
-
recognition §5.8
-
recommender system §17.2.1
-
record linkage §17.4
-
recoverable §11.2
-
rectified linear unit §7.3.2, §8.1
-
recurrent neural network (RNN) §8.5.2, §9.6.3
-
recursive conditioning
-
reference point §12.1.3
-
regression item Task, §7.2
-
regularization item Regularize, §7.4.2
-
regularization parameter §7.4.2
-
regularizer §7.4.2
-
regulatory capture §18.8
-
reify §16.1.1
-
reinforcement learning §1.2, Chapter 13—§13.13, item Feedback
-
from human feedback §18.3
-
rejection sampling §9.7.3
-
relation item relations, §A.4, §1.5.3, 2nd item, Chapter 17, Chapter 17
-
relation scheme §A.4
-
relational
-
ReLU §7.3.2, §8.1
-
ReLU (neural network)
-
remember §2.1.3, §2.2
-
renaming §15.5.1
-
Rephil §17.3.3, Example 9.38
-
representation §1.6.2, §1.6.4, §8.6.1
-
representation learning Chapter 8
-
resampling §9.7.6
-
residual network 8th item
-
resilience §18.6
-
resolution §5.3.2, §5.3.2
-
resolvent §5.3.2
-
resource §16.1.2, §16.3
-
retry 2nd item
-
return §12.5, §13.4.1
-
revelation principle §14.6
-
reward 6th item, §12.5, §12.5, item Measuring success
-
rewrite rule §15.7.1, §15.8.1
-
ridge regression §7.4.2
-
risk averse §12.1.1
-
RL, see reinforcement learning
-
RLHF, see Reinforcement Learning from Human Feedback
-
RMS-Prop Table B.2, §8.2.2
-
RNN, see recurrent neural network
-
RoboCup §18.6
-
robot §1.3, §1.4.1, §2.1
-
ROC space §7.2.3
-
rolling average §A.1
-
root §3.3.1
-
root-mean-square (RMS) error 3rd item
-
RPM, see relational probabilistic model
-
rule 1st item, 2nd item
-
rule of inference §5.3.2
-
run §14.2.2
-
run-time distribution §4.6.4
-
saddle point §8.2
-
safe exploration 4th item
-
safety §1.6.1, §18.3, §18.3, §18.3, §18.5, §18.8
-
safety goal 2nd item
-
salience §18.3
-
sample Chapter 7
-
sample average §9.7.1
-
SARSA §13.7
-
SAT §5.2
-
satisfiable §5.8
-
satisficing solution item Satisficing solution, §3.1
-
satisfy
-
scalable oversight 3rd item
-
scenario §5.8
-
schema (Kant) §1.2
-
scheme
-
scientific goal §1.1
-
scope §A.3, §A.4, 1st item, §4.1.2, §4.8, §9.3.3
-
SDG, see Sustainable Development Goals
-
search 2nd item, Chapter 3—§3.12
-
search and score §10.4.3
-
search strategy §3.5
-
second-order logic §15.6
-
second-price auction §14.6
-
select §3.4, §5.3.2
-
selection §A.4
-
self-attention §8.5.4
-
self-driving cars §2.4
-
semantic interoperability 3rd item
-
semantic network §16.1.3
-
semantic roles Example 16.5
-
semantic web §16.3
-
semantics Figure 15.1, §5.1.2
-
semi-autonomous §18.3, §18.3
-
semi-decidable logic §15.6
-
semi-supervised learning §8.6.1
-
sensing uncertainty dimension §1.5.6, §19.2
-
sensor 1st item, 2nd item
-
sensor fusion Example 9.33
-
sentence §15.7.1, §9.6.6
-
separable control problem §2.3.2
-
sequence-to-sequence mapping §8.5.2
-
sequential
-
sequential data §8.5
-
set item sets
-
SGD, see stochastic gradient descent
-
shortcut connection 8th item
-
SHRDLU §1.2
-
side-effect 1st item
-
sigmoid (neural network)
-
sigmoid function §7.3.2, 2nd item, 1st item
-
Simpson’s paradox §11.3.4
-
simulated annealing §4.6.3, §4.6.3
-
simultaneous localization and mapping (SLAM) §9.8
-
simultaneous-action games §14.2.2
-
single agent 1st item
-
single decision §12.2
-
single-stage decision network §12.2.1
-
singularity §18.3, §19.3
-
situated agent §1.2
-
skip connection 8th item
-
Skip-gram model 2nd item
-
SLD derivation §15.5.4, §5.3.2
-
SLD resolution §15.5.4, §5.3.2
-
Smalltalk §16.2.1
-
smart home §1.4.5
-
SMC, see sequential Monte Carlo
-
smooth §4.8.3
-
smoothing §9.6.2, §9.6.3
-
Sobel–Feldman operator Example 8.8
-
social preference function §14.5
-
society §1.1.2
-
soft clustering §10.3
-
soft constraint Chapter 4, §4.8
-
softmax 3rd item, §7.3.2, 3rd item
-
softmax regression §7.3.2
-
software agent §1.3
-
software engineering §1.6.3
-
solution §3.2, §3.3.1, §4.1.3
-
sound §5.3.2
-
spam filter §10.5
-
squared loss §10.3.1, 3rd item, 1st item
-
squashed linear function §7.3.2
-
stable assignment §10.3.1
-
stack §3.5.2
-
Stackelberg security games §14.8, §18.6
-
stage §1.5.2, §9.6.1
-
stakes 1st item
-
start node §3.3.1
-
start state 2nd item
-
starvation §15.6.1, 1st item
-
state §1.5.3, §3.2, §9.6.1
-
stationary
-
statistical relational AI §1.2, Chapter 17, §17.3.1
-
statistics §1.2
-
step size §4.8.3, §4.8.3
-
stimuli 2nd item, §2.1
-
stochastic
-
stochastic gradient descent §8.1.1
-
stochastic policy iteration
-
stopping state §12.5
-
strategic agent §14.1
-
strategic-form game §14.2.1
-
strategy §14.2.1, §14.2.2, §14.4
-
strictly dominated §14.4.1, §4.8.1
-
strictly preferred §12.1.1
-
stride 5th item
-
STRIPS assumption §6.1.2
-
STRIPS representation §6.1.2, §6.1.2
-
structural causal model §11.1, §5.9
-
structure learning §10.4.3
-
structured prediction item Task, §7.2
-
STUDENT §1.2
-
sub-property §16.2.1
-
subclass §16.2.1
-
subgame-perfect equilibrium §14.4
-
subgoal §5.3.2, §5.3.2, 1st item, §6.3
-
subject 3rd item, §16.1.1
-
subjective probability §9.1
-
substitutes 2nd item
-
substitution §15.5.1
-
successor §4.6
-
sufficient statistics §10.3.1, §10.3.2
-
sum of losses §7.2.1
-
superintelligence §18.3
-
supervised learning §10.4, item Task, item Feedback, §7.10, §7.2—§7.2
-
support set item 2, §14.4
-
surveillance capitalism §18.1, §18.8
-
sustainability §18.6
-
sustainable development §18.6
-
Sustainable Development Goals §18.6
-
symbol §1.6.4, §15.3, §4.1.1
-
symptoms §1.4.2
-
syntax
-
synthesis §1.1
-
systems 1 and 2 §2.2, §2.6
-
tabu search §4.6.3
-
tabu tenure §4.6.3
-
tail §16.1.3
-
tangent §4.8.3
-
tanh 2nd item
-
target Chapter 7
-
target features 2nd item
-
task item Task, item Task
-
TBox 1st item
-
TD error §13.3
-
tell §2.2, item Step 3
-
temperature 3rd item
-
temporal difference
-
temporal-difference learning §1.2
-
tensor §8.5.1
-
tensorflow §B.2
-
term 4th item, §15.6
-
terminal symbol §15.7.1
-
terminological knowledge base 1st item
-
test example item Measuring success
-
thematic relations Example 16.5
-
theorem §5.3.2
-
Theorist §5.12
-
there exists () 2nd item
-
thing §1.5.3, 1st item, §16.3.2
-
Thompson sampling 5th item
-
thought §1.1
-
threat Example 14.14
-
time §2.1.1
-
time granularity §9.6.5
-
time-homogenous model §9.6.1
-
tit-for-tat §14.4
-
TMS, see truth maintenance system
-
token §15.7.1, §8.5
-
tokenization §8.5
-
top-down proof procedure §15.5.4, §5.3.2
-
top-level ontology §16.3.2
-
top-n §17.2.1, §17.2.1
-
topic model §17.3.3, §9.6.6
-
total assignment §4.1.1
-
total reward item Total reward
-
tournament selection §4.7
-
tractable §1.6.2
-
trading agent §1.4.4
-
tragedy of the commons §14.10, §14.8, §18.6
-
training example item Task, item Measuring success, 3rd item
-
transduction §2.1.1
-
transfer learning §19.3
-
transformer §1.2, §9.6.6
-
transformers §8.5.4
-
transient goal 3rd item
-
transitivity of preferences Axiom 12.2
-
transparency §18.3
-
tree §3.3.1
-
tree-augmented naive Bayes (TAN) network 2nd item
-
treewidth §4.5, §9.5.3
-
triangle inequality §3.7.2
-
trigram §9.6.6
-
triple item tuples, §16.1.1
-
triple representation §16.1.1
-
triple store 3rd item
-
trolley problem §2.4
-
trolley problems §12.1.3
-
true item relations, §15.3.1, §5.1.2
-
true-positive rate 1st item
-
trust §18.7
-
trustworthiness §18.3
-
truth discovery §17.3.2
-
truth maintenance system §5.12
-
truthful 1st item
-
try (local search) §4.6
-
tuple item tuples, §A.4
-
Turing machine §1.2
-
Turing test §1.1.1
-
tutoring Example 1.7
-
tutoring agent §1.4.3, Example 1.10, Example 1.17, Example 1.22, Example 1.28, Example 1.33, Example 3.5, §5.8, §5.8
-
two-dimensional kernel §8.4
-
two-player zero-sum game 2nd item
-
two-stage choice §4.6.3
-
two-step belief network §9.6.4
-
Example 16.4
-
type I error §7.2.3
-
type II error §7.2.3
-
types of data 5th item
-
UCB1 4th item
-
UML 6th item
-
unary constraint §4.1.2
-
unary relations 2nd item
-
unconditionally independent §9.2
-
underflow §7.3.2
-
undirected model §9.3.3
-
unfolded network §12.5.4, §9.6.4
-
unification §15.5.3, §15.5.3
-
unifier §15.5.1
-
uniform resource identifier §16.1.2
-
uniform-cost search §3.5.4
-
unify §15.5.1
-
unigram §17.3.3, §9.6.6
-
uninformed search strategy §3.5, §3.6
-
union §A.4
-
unique names assumption (UNA) §15.8.2
-
unit (neural network) Chapter 8, §8.1
-
unit resolution 2nd item
-
universal basic income §18.4
-
universal function approximator §19.3
-
universally quantified variable 1st item, 1st item
-
unnormalized probabilities 3rd item
-
unsatisfiable §5.6.1
-
unstructured 5th item
-
unsupervised learning §10.3, §10.3.2, item Feedback
-
upper confidence bound 4th item
-
URI, see uniform resource identifier
-
useful action 2nd item
-
user 1st item, §4.1.1, §5.4
-
user embedding item Add latent properties
-
utility item Optimal solution, Proposition 12.3, 2nd item, item Measuring success
-
utility node 3rd item
-
1st item, §12.5.1
-
§12.5.1
-
validation set §7.4.3
-
value §12.5
-
value embedding 3rd item
-
value iteration
-
variable Chapter 4, §4.1.1
-
variable elimination §4.5, §9.5.2
-
variance 2nd item
-
variational inference 3rd item
-
VCG (Vickrey–Clarke–Groves) mechanism §14.6
-
VE, see variable elimination
-
vector §8.1, §8.5.1
-
verb 3rd item, §16.1.1
-
vigilance §18.3
-
violates §4.1.2
-
virtual body §2.2
-
vocabulary §8.5
-
walk §4.6
-
Watson §1.2, §15.10
-
weak learner §7.5.1
-
weakly dominated §4.8.1
-
weakly preferred §12.1.1
-
web ontology language, see OWL
-
web services §1.4.4
-
weight §7.3.2
-
weight tying §17.3.1, 2nd item, §9.6.1
-
weighted logical formula §9.3.3
-
weighted model counting §9.3.3
-
width (neural network) §8.1
-
Wikidata §16.1.2, §16.6, Example 16.7
-
winner-take-all §18.1
-
Winograd schema §1.1.1
-
word §15.7.1, §8.5, §9.6.6
-
word embedding item Add latent properties, §8.5.1, §8.5.1, §8.5.1
-
Word2vec §8.5.1, §8.9
-
world §1.3
-
worst-case loss 4th item
-
wrapper 3rd item
-
XGBoost §B.1, §7.5.2, §7.9
-
XML §16.3
-
YAGO §16.6
-
yes answer §5.3.1
-
Zeno’s paradox §3.5.4
-
zero padding 2nd item
-
zero-sum game 2nd item, §14.3.1
-
zero–one loss 1st item
-
-greedy exploration strategy 2nd item
-
(denotation of predicate symbols) 3rd item
-
(meaning of atoms) §5.1.2
-
(denotation of terms) 2nd item, §15.6