References
-
AAAI [2019]
AAAI [2019].
AAAI code of professional ethics and conduct.
https://www.aaai.org/Conferences/code-of-ethics-and-conduct.php.
-
Abelson and DiSessa [1981]
Abelson, H. and DiSessa, A. [1981].
Turtle Geometry: The Computer as a Medium for Exploring
Mathematics.
MIT Press.
-
Acemoglu et al. [2021]
Acemoglu, D., Ozdaglar, A., and Siderius, J. [2021].
A model of online misinformation.
Working Paper 28884, National Bureau of Economic Research.
http://dx.doi.org/10.3386/w28884.
-
ACM Committee on Professional Ethics [2018]
ACM Committee on Professional Ethics [2018].
ACM code of ethics and professional conduct.
https://ethics.acm.org.
-
Agrawal et al. [2019]
Agrawal, A., Gans, J., and Goldfarb, A. [2019].
The Economics of Artificial Intelligence: An Agenda.
National Bureau of Economic Research Conference Report. University of
Chicago Press.
-
Agrawal et al. [2022]
Agrawal, A., Gans, J., and Goldfarb, A. [2022].
Prediction Machines, Updated and Expanded: The Simple Economics
of Artificial Intelligence.
Harvard Business Review Press.
-
Agre [1995]
Agre, P. E. [1995].
Computational research on interaction and agency.
Artificial Intelligence, 72:1–52.
-
Ajunwa [2020]
Ajunwa, I. [2020].
The paradox of automation as anti-bias intervention.
Cardozo, L. Rev., 167.
-
Alammar [2018]
Alammar, J. [2018].
The illustrated transformer.
https://jalammar.github.io/illustrated-transformer/.
-
Albus [1981]
Albus, J. S. [1981].
Brains, Behavior and Robotics.
BYTE Publications.
-
Algorithm Watch [2022]
Algorithm Watch [2022].
A guide to the AI act.
https://algorithmwatch.org/en/ai-act-explained/.
-
Allais and Hagen [1979]
Allais, M. and Hagen, O. (eds.) [1979].
Expected Utility Hypothesis and the Allais Paradox.
Reidel.
-
Allemang et al. [2020]
Allemang, D., Hendler, J., and Gandon, F. [2020].
Semantic Web for the Working Ontologist: Effective Modeling for
Linked Data, RDFS and OWL.
ACM Books, 3rd edition.
-
Amershi et al. [2019]
Amershi, S., et al. [2019].
Guidelines for human–AI interaction.
In CHI 2019. ACM.
https://www.microsoft.com/en-us/research/publication/guidelines-for-human-ai-interaction/.
CHI 2019 Honorable Mention Award.
-
Amodei et al. [2016]
Amodei, D., et al. [2016].
Concrete Problems in AI Safety.
ArXiv e-prints, arXiv:1606.06565.
-
Andreae [1963]
Andreae, J. H. [1963].
STELLA: A scheme for a learning machine.
In 2nd IFAC Congress, pp. 497–502.
-
Andrieu et al. [2003]
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. [2003].
An introduction to MCMC for machine learning.
Machine Learning, 50(1–2):5–43.
-
Antoniou and van Harmelen [2008]
Antoniou, G. and van Harmelen, F. [2008].
A Semantic Web Primer.
MIT Press, 2nd edition.
-
Apt and Bol [1994]
Apt, K. and Bol, R. [1994].
Logic programming and negation: A survey.
Journal of Logic Programming, 19/20:9–71.
-
Archer [2022]
Archer, S. [2022].
Salience: A Philosophical Inquiry.
Routledge.
-
Aristotle [350 BCE]
Aristotle [350 BCE].
Categories.
Translated by E. M. Edghill.
http://classics.mit.edu/Aristotle/categories.html.
-
Arp et al. [2015]
Arp, R., Smith, B., and Spear, A. [2015].
Building Ontologies with Basic Formal Ontology.
MIT Press.
-
Arrow [1963]
Arrow, K. [1963].
Social Choice and Individual Values.
Wiley, 2nd edition.
-
Asimov [1950]
Asimov, I. [1950].
I, Robot.
Doubleday.
-
Auer et al. [2002]
Auer, P., Cesa-Bianchi, N., and Fischer, P. [2002].
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2):235–256.
http://dx.doi.org/10.1023/A:1013689704352.
-
Auer et al. [2007]
Auer, S., et al. [2007].
DBpedia: A nucleus for a web of open data.
In 6th International Semantic Web Conference (ISWC).
-
Awad et al. [2018]
Awad, E., et al. [2018].
The moral machine experiment.
Nature, 563(7729):59–64.
http://dx.doi.org/10.1038/s41586-018-0637-6.
-
Awad et al. [2020]
Awad, E., et al. [2020].
Crowdsourcing moral machines.
Communications of the ACM, 63(3):Pages 48–55.
-
Baader
et al. [2007]
Baader, F., et al. (eds.) [2007].
The Description Logic Handbook: Theory, Implementation and
Applications.
Cambridge University Press, 2nd edition.
http://dx.doi.org/10.1017/CBO9780511711787.
-
Bacchus and Grove [1995]
Bacchus, F. and Grove, A. [1995].
Graphical models for preference and utility.
In Uncertainty in Artificial Intelligence (UAI-95), pp. 3–10.
-
Bacchus and Kabanza [1996]
Bacchus, F. and Kabanza, F. [1996].
Using temporal logic to control search in a forward chaining planner.
In Ghallab, M. and Milani, A. (eds.), New Directions in AI
Planning, pp. 141–153. ISO Press.
-
Bach et al. [2017]
Bach, S. H., Broecheler, M., Huang, B., and Getoor, L. [2017].
Hinge-loss Markov random fields and probabilistic soft logic.
Journal of Machine Learning Research (JMLR), 18:1–67.
-
Bäck [1996]
Bäck, T. [1996].
Evolutionary Algorithms in Theory and Practice.
Oxford University Press.
-
Baek et al. [2021]
Baek, M., et al. [2021].
Accurate prediction of protein structures and interactions using a
three-track neural network.
Science, 373(6557):871–876.
http://dx.doi.org/10.1126/science.abj8754.
-
Bahdanau et al. [2015]
Bahdanau, D., Cho, K., and Bengio, Y. [2015].
Neural machine translation by jointly learning to align and
translate.
In International Conference on Learning Represenations (ICLR).
http://dx.doi.org/10.48550/arXiv.1409.0473.
-
Bakhtin et al. [2022]
Bakhtin, A., et al. [2022].
Human-level play in the game of Diplomacy by combining language
models with strategic reasoning.
Science, 378(6624):1067–1074.
http://dx.doi.org/10.1126/science.ade9097.
-
Bakker et al. [2020]
Bakker, K., et al. [2020].
Digital technologies and dynamic resource management.
2020 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 368–373.
-
Ballard [1983]
Ballard, B. W. [1983].
The -minimax search procedure for trees containing chance nodes.
Artificial Intelligence, 21(3):327–350.
-
Bansal et al. [2021]
Bansal, G., et al. [2021].
Does the whole exceed its parts? The effect of AI explanations on
complementary team performance.
In 2021 CHI Conference on Human Factors in Computing Systems.
http://dx.doi.org/10.1145/3411764.3445717.
-
Bartlett [1932]
Bartlett, F. C. [1932].
Remembering: A Study in Experimental and Social Psychology.
Cambridge University Press.
http://dx.doi.org/10.1017/CBO9780511759185.
-
Baum [2004]
Baum, E. B. [2004].
What is Thought?
MIT Press.
-
Bayes [1763]
Bayes, T. [1763].
An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society of London,
53:370–418.
https://doi.org/10.1098/rstl.1763.0053.
-
Bell and Koren [2007]
Bell, R. M. and Koren, Y. [2007].
Lessons from the netflix prize challenge.
SIGKDD Explor. Newsl., 9(2):75–79.
http://dx.doi.org/10.1145/1345448.1345465.
-
Bellman [1957]
Bellman, R. [1957].
Dynamic Programming.
Princeton University Press.
-
Bender et al. [2021]
Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. [2021].
On the dangers of stochastic parrots: Can language models be too big?
In 2021 ACM Conference on Fairness, Accountability, and
Transparency, pp. 610–623.
http://dx.doi.org/10.1145/3442188.3445922.
-
Bender and Koller [2020]
Bender, E. M. and Koller, A. [2020].
Climbing towards NLU: On meaning, form, and understanding in the
age of data.
In 58th Annual Meeting of the Association for Computational
Linguistics, pp. 5185–5198.
http://dx.doi.org/10.18653/v1/2020.acl-main.463.
-
Bengio et al. [2003]
Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. [2003].
A neural probabilistic language model.
J. Mach. Learn. Res. (JMLR), 3:1137–1155.
-
Benjamin [2019]
Benjamin, R. [2019].
Race After Technology : Abolitionist Tools for the New Jim
Code.
Polity.
-
Bent and Van Hentenryck [2004]
Bent, R. and Van Hentenryck, P. [2004].
A two-stage hybrid local search for the vehicle routing problem with
time windows.
Transportation Science, 38(4):515–530.
-
Berners-Lee et al. [2001]
Berners-Lee, T., Hendler, J., and Lassila, O. [2001].
The semantic web: A new form of web content that is meaningful to
computers will unleash a revolution of new possibilities.
Scientific American, May:28–37.
-
Bertelè and Brioschi [1972]
Bertelè, U. and Brioschi, F. [1972].
Nonserial Dynamic Programming.
Academic Press.
-
Bertsekas [2017]
Bertsekas, D. P. [2017].
Dynamic Programming and Optimal Control.
Athena Scientific, 4th edition.
-
Besnard and Hunter [2008]
Besnard, P. and Hunter, A. [2008].
Elements of Argumentation.
MIT Press.
-
Bickel et al. [1975]
Bickel, P. J., Hammel, E. A., and O’Connell, J. W. [1975].
Sex bias in graduate admissions: Data from Berkeley.
Science, 187(4175):398–404.
-
Biere et al. [2021]
Biere, A., Heule, M., van Maaren, H., and Walsh, T. (eds.) [2021].
Handbook of Satisfiability.
IOS Press, 2nd edition.
-
Bishop [2008]
Bishop, C. M. [2008].
Pattern Recognition and Machine Learning.
Springer-Verlag.
-
Bisk et al. [2020]
Bisk, Y., et al. [2020].
Experience grounds language.
CoRR, abs/2004.10151.
https://arxiv.org/abs/2004.10151.
-
Blei et al. [2003]
Blei, D. M., Ng, A. Y., and Jordan, M. I. [2003].
Latent Dirichlet allocation.
Journal of Machine Learning Research (JMLR), 3:993–1022.
-
Bleichrodt et al. [2008]
Bleichrodt, H., Rohde, K. I., and Wakker, P. P. [2008].
Koopmans’ constant discounting for intertemporal choice: A
simplification and a generalization.
Journal of Mathematical Psychology, 52(6):341–347.
http://dx.doi.org/https://doi.org/10.1016/j.jmp.2008.05.003.
-
Blodgett et al. [2020]
Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, H. [2020].
Language (technology) is power: A critical survey of “bias” in
NLP.
In 58th Annual Meeting of the Association for Computational
Linguistics.
http://dx.doi.org/10.18653/v1/2020.acl-main.485.
-
Blum and Furst [1997]
Blum, A. and Furst, M. [1997].
Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300.
-
Bobrow [1967]
Bobrow, D. G. [1967].
Natural language input for a computer problem solving system.
In Minsky, M. (ed.), Semantic Information Processing, pp.
133–215. MIT Press.
-
Bobrow [1993]
Bobrow, D. G. [1993].
Artificial intelligence in perspective: a retrospective on fifty
volumes of Artificial Intelligence.
Artificial Intelligence, 59:5–20.
-
Boddy and Dean [1994]
Boddy, M. and Dean, T. L. [1994].
Deliberation scheduling for problem solving in time-constrained
environments.
Artificial Intelligence, 67(2):245–285.
-
Bodlaender [1993]
Bodlaender, H. L. [1993].
A tourist guide through treewidth.
Acta Cybernetica, 11(1–2):1–21.
-
Bommasani et al. [2021]
Bommasani, R. et al. [2021].
On the opportunities and risks of foundation models.
CoRR, abs/2108.07258.
https://arxiv.org/abs/2108.07258.
-
Bonnefon [2021]
Bonnefon, J.-F. [2021].
The Car That Knew Too Much Can a Machine Be Moral?
MIT Press.
-
Bostrom [2014]
Bostrom, N. [2014].
Superintelligence: Paths, Dangers, Strategies.
Oxford University Press.
-
Boutilier et al. [1999]
Boutilier, C., Dean, T., and Hanks, S. [1999].
Decision-theoretic planning: Structual assumptions and computational
leverage.
Journal of Artificial Intelligence Research, 11:1–94.
-
Boutilier et al. [2004]
Boutilier, C., et al. [2004].
CP-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21:135–191.
-
Brachman and Levesque [1985]
Brachman, R. J. and Levesque, H. J. (eds.) [1985].
Readings in Knowledge Representation.
Morgan Kaufmann.
-
Brachman and Levesque [2004]
Brachman, R. J. and Levesque, H. J. [2004].
Knowledge Representation and Reasoning.
Morgan Kaufmann.
-
Brachman and Levesque [2022a]
Brachman, R. J. and Levesque, H. J. [2022a].
Machines like Us: Toward AI with Common Sense.
MIT Press.
-
Brachman and Levesque [2022b]
Brachman, R. J. and Levesque, H. J. [2022b].
Toward a new science of common sense.
In Thirty-Sixth AAAI Conference on Artificial Intelligence
(AAAI-22).
-
Breiman [2001]
Breiman, L. [2001].
Random forests.
Machine Learning, 45(1):5–32.
-
Breiman et al. [1984]
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. [1984].
Classification and Regression Trees.
Wadsworth & Brooks.
-
Brémaud [1999]
Brémaud, P. [1999].
Markov Chains: Gibbs Fields, Monte Carlo Simulation and
Queues.
Springer.
-
Brin and Page [1998]
Brin, S. and Page, L. [1998].
The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117.
http://www.sciencedirect.com/science/article/pii/S016975529800110X.
-
Brooks [1986]
Brooks, R. A. [1986].
A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14–23.
-
Brooks [1990]
Brooks, R. A. [1990].
Elephants don’t play chess.
Robotics and Autonomous Systems, 6:3–15.
-
Brooks [1991]
Brooks, R. A. [1991].
Intelligence without representation.
Artificial Intelligence, 47:139–159.
-
Brooks [2018]
Brooks, R. A. [2018].
My dated predictions.
https://rodneybrooks.com/my-dated-predictions/.
-
Broussard [2018]
Broussard, M. [2018].
Artificial Unintelligence: How Computers Misunderstand the
World.
MIT Press.
http://dx.doi.org/10.7551/mitpress/11022.001.0001.
-
Brown and Sandholm [2019]
Brown, N. and Sandholm, T. [2019].
Superhuman AI for multiplayer poker.
Science, 365(6456):885–890.
http://dx.doi.org/10.1126/science.aay2400.
-
Brown et al. [2020]
Brown, T., et al. [2020].
Language models are few-shot learners.
In Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901.
https://arxiv.org/abs/2005.14165.
-
Brundtland et al. [1987]
Brundtland, G. H. et al. [1987].
Our Common Future.
United Nations, Report of the World Commission on Environment and
Development.
https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf.
-
Bryce and Kambhampati [2007]
Bryce, D. and Kambhampati, S. [2007].
A tutorial on planning graph-based reachability heuristics.
AI Magazine, 28(1):47–83.
-
Brynjolfsson and McAfee [2014]
Brynjolfsson, E. and McAfee, A. [2014].
The Second Machine Age: Work, Progress, and Prosperity in a
Time of Brilliant Technologies.
W. W. Norton & Co.
-
Bryson [2011]
Bryson, J. J. [2011].
AI robots should not be considered moral agents.
In Berlatsky, N. (ed.), Artificial Intelligence, Opposing
Viewpoints, pp. 155–168. Greenhaven Press.
-
Bryson [2018]
Bryson, J. J. [2018].
Patiency is not a virtue: the design of intelligent systems and
systems of ethics.
Ethics and Information Technology, 20(1):15–26.
http://dx.doi.org/10.1007/s10676-018-9448-6.
-
Buchanan [2005]
Buchanan, B. G. [2005].
A (very) brief history of artificial intelligence.
AI Magazine, 26(4):53–60.
-
Buchanan and Feigenbaum [1978]
Buchanan, B. G. and Feigenbaum, E. A. [1978].
Dendral and Meta-Dendral: Their applications dimension.
Artificial Intelligence, 11:5–24.
-
Buchanan and Shortliffe [1984]
Buchanan, B. G. and Shortliffe, E. (eds.) [1984].
Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project.
Addison-Wesley.
-
Buntine [1992]
Buntine, W. [1992].
Learning classification trees.
Statistics and Computing, 2:63–73.
-
Buntine [1994]
Buntine, W. L. [1994].
Operations for learning with graphical models.
Journal of Artificial Intelligence Research, 2:159–225.
-
Buolamwini and Gebru [2018]
Buolamwini, J. and Gebru, T. [2018].
Gender shades: Intersectional accuracy disparities in commercial
gender classification.
In 1st Conference on Fairness, Accountability and
Transparency.
https://proceedings.mlr.press/v81/buolamwini18a.html.
-
Burch [2022]
Burch, R. [2022].
Charles Sanders Peirce.
The Stanford Encyclopedia of Philosophy.
http://plato.stanford.edu/archives/sum2022/entries/peirce/.
-
Busoniu et al. [2008]
Busoniu, L., Babuska, R., and Schutter, B. D. [2008].
A comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38(2):156–172.
-
Calo [2014]
Calo, R. [2014].
The case for a federal robotics commission.
Brookings Institution Center for Technology Innovation.
-
Calo et al. [2016]
Calo, R., Froomkin, A. M., and Kerr, I. [2016].
Robot Law.
Edward Elgar.
-
Campbell et al. [2002]
Campbell, M., Hoane Jr., A. J., and Hse, F.-h. [2002].
Deep Blue.
Artificial Intelligence, 134(1–2):57–83.
-
Caswell and Liang [2020]
Caswell, I. and Liang, B. [2020].
Recent advances in Google translate.
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html.
-
Cauchy [1847]
Cauchy, A. [1847].
Méthode générale pour la résolution des systèmes
d’équations simultanées.
C. R. Acad. Sci. Paris, 25:536–538.
-
Center for AI and Digital Policy [2023]
Center for AI and Digital Policy [2023].
Artificial intelligence and democratic values.
https://www.caidp.org/reports/aidv-2021/.
-
Chapman [1987]
Chapman, D. [1987].
Planning for conjunctive goals.
Artificial Intelligence, 32(3):333–377.
-
Charlton [1998]
Charlton, J. I. [1998].
Nothing About Us Without Us: Disability Oppression and
Empowerment.
University of California Press, 1st edition.
http://www.jstor.org/stable/10.1525/j.ctt1pnqn9.
-
Chaudhri et al. [2022]
Chaudhri, V. K., et al. [2022].
Knowledge graphs: Introduction, history and, perspectives.
AI Magazine, 43(1):17–29.
-
Cheeseman et al. [1988]
Cheeseman, P., et al. [1988].
Autoclass: A Bayesian classification system.
In Fifth International Conference on Machine Learning, pp.
54–64.
Reprinted in Shavlik and Dietterich [1990].
-
Chen et al. [2017]
Chen, J., Holte, R. C., Zilles, S., and Sturtevant, N. R. [2017].
Front-to-end bidirectional heuristic search with near-optimal node
expansions.
In IJCAI-2017.
-
Chen and Guestrin [2016]
Chen, T. and Guestrin, C. [2016].
Xgboost: A scalable tree boosting system.
In KDD ’16: 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 785–794.
https://doi.org/10.1145/2939672.2939785.
-
Cheng and Druzdzel [2000]
Cheng, J. and Druzdzel, M. [2000].
AIS-BN: An adaptive importance sampling algorithm for evidential
reasoning in large Bayesian networks.
Journal of Artificial Intelligence Research, 13:155–188.
http://www.jair.org/papers/paper764.html.
-
Chesnevar et al. [2000]
Chesnevar, C., Maguitman, A., and Loui, R. [2000].
Logical models of argument.
ACM Computer Surveys, 32(4):337–383.
-
Choi et al. [2020]
Choi, Y., Vergari, A., and Van den Broeck, G. [2020].
Probabilistic circuits: A unifying framework for tractable
probabilistic models.
Technical report, UCLA StarAI Lab.
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf.
-
Chollet [2021]
Chollet, F. [2021].
Deeep Learning with Python.
Manning.
-
Chomsky [1957]
Chomsky, N. [1957].
Syntactic Structures.
Mouton & Co.
-
Chowdhery et al. [2022]
Chowdhery, A., et al. [2022].
PaLM: Scaling language modeling with pathways.
http://dx.doi.org/10.48550/arXiv.2204.02311.
-
Chrisley and Begeer [2000]
Chrisley, R. and Begeer, S. [2000].
Artificial intelligence: Critical Concepts in Cognitive
Science.
Routledge.
-
Christian [2020]
Christian, B. [2020].
The Alignment Problem: Machine Learning and Human Values.
W. W. Norton & Co.
-
Clark [1978]
Clark, K. L. [1978].
Negation as failure.
In Gallaire, H. and Minker, J. (eds.), Logic and Databases,
pp. 293–322. Plenum Press.
-
Cohen [2005]
Cohen, P. R. [2005].
If not Turing’s test, then what?
AI Magazine, 26(4):61–67.
-
Colledanchise and Ögren [2018]
Colledanchise, M. and Ögren, P. [2018].
Behavior Trees in Robotics and AI: An Introduction.
CRC Press.
-
Colmerauer et al. [1973]
Colmerauer, A., Kanoui, H., Roussel, P., and Pasero, R. [1973].
Un système de communication homme-machine en français.
Technical report, Groupe de Researche en Intelligence Artificielle,
Université d’Aix-Marseille.
-
Colmerauer and Roussel [1996]
Colmerauer, A. and Roussel, P. [1996].
The birth of Prolog.
In Bergin, T. J. and Gibson, R. G. (eds.), History of
Programming Languages–II, pp. 331–367. ACM Press/Addison-Wesley.
-
Conati et al. [2002]
Conati, C., Gertner, A. S., and VanLehn, K. [2002].
Using Bayesian networks to manage uncertainty in student modeling.
User Modeling and User-Adapted Interaction, 12(4):371–417.
http://dx.doi.org/10.1023/A:1021258506583.
-
Confucius [500 BCE]
Confucius [500 BCE].
Confucian Analects.
translated by James Legge [1893].
https://www.sacred-texts.com/cfu/conf1.htm.
-
Cormen et al. [2022]
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. [2022].
Introduction to Algorithms.
MIT Press, 4th edition.
-
Cover and Thomas [2006]
Cover, T. M. and Thomas, J. A. [2006].
Elements of Information Theory.
Wiley, 2nd edition.
-
Cramer [2002]
Cramer, J. [2002].
The origins of logistic regression.
Working Paper 2002-119/4, Tinbergen Institute.
http://dx.doi.org/10.2139/ssrn.360300.
-
Crawford [2021]
Crawford, K. [2021].
The Atlas of AI: Power, Politics, and the Planetary Costs of
Artificial Intelligence.
Yale University Press.
-
Culberson and Schaeffer [1998]
Culberson, J. and Schaeffer, J. [1998].
Pattern databases.
Computational Intelligence, 14(3):318–334.
-
Dadich [2016]
Dadich, S. [2016].
Barack Obama, neural nets, self-driving cars, and the future of the
world.
Wired.
-
Dahl [1994]
Dahl, V. [1994].
Natural language processing and logic programming.
Journal of Logic Programming, 19/20:681–714.
-
Danaher [2021]
Danaher, J. [2021].
Automation and the future of work.
In The Oxford Handbook of Digital Ethics. Oxford University
Press.
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.37.
-
Darwiche [2001]
Darwiche, A. [2001].
Recursive conditioning.
Artificial Intelligence, 126(1-2):5–41.
-
Darwiche [2009]
Darwiche, A. [2009].
Modeling and Reasoning with Bayesian Networks.
Cambridge University Press.
-
Darwiche [2018]
Darwiche, A. [2018].
Human-level intelligence or animal-like abilities?
Communication of the ACM, 61(10):56–67.
http://dx.doi.org/10.1145/3271625.
-
Davis [1990]
Davis, E. [1990].
Representations of Commonsense Knowledge.
Morgan Kaufmann.
-
Davis [2015]
Davis, E. [2015].
A collection of Winograd schemas.
http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html.
-
Davis and Goadrich [2006]
Davis, J. and Goadrich, M. [2006].
The relationship between precision-recall and ROC curves.
In 23rd International Conference on Machine Learning (ICML),
pp. 233–240.
-
Davis et al. [1962]
Davis, M., Logemann, G., and Loveland, D. [1962].
A machine program for theorem proving.
Communications of the ACM, 5(7):394–397.
-
Davis and Putnam [1960]
Davis, M. and Putnam, H. [1960].
A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215.
-
De Jong [2006]
De Jong, K. A. [2006].
Evolutionary Computation: A Unified Approach.
MIT Press.
-
de Kleer [1986]
de Kleer, J. [1986].
An assumption-based TMS.
Artificial Intelligence, 28(2):127–162.
-
de Kleer et al. [1992]
de Kleer, J., Mackworth, A. K., and Reiter, R. [1992].
Characterizing diagnoses and systems.
Artificial Intelligence, 56:197–222.
-
De Raedt et al. [2008]
De Raedt, L., Frasconi, P., Kersting, K., and Muggleton, S. H. (eds.) [2008].
Probabilistic Inductive Logic Programming.
Springer.
-
De Raedt et al. [2016]
De Raedt, L., Kersting, K., Natarajan, S., and Poole, D. [2016].
Statistical Relational Artificial Intelligence: Logic,
Probability, and Computation.
Morgan & Claypool.
http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032.
-
De Raedt et al. [2007]
De Raedt, L., Kimmig, A., and Toivonen, H. [2007].
ProbLog: A probabilistic Prolog and its application in link
discovery.
In 20th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2462–2467.
-
Dean and Kanazawa [1989]
Dean, T. and Kanazawa, K. [1989].
A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150.
-
Dean and Wellman [1991]
Dean, T. L. and Wellman, M. P. [1991].
Planning and Control.
Morgan Kaufmann.
-
Dechter [1996]
Dechter, R. [1996].
Bucket elimination: A unifying framework for probabilistic inference.
In Twelfth Conference on Uncertainty in Artificial Intelligence
(UAI-96), pp. 211–219.
-
Dechter [2003]
Dechter, R. [2003].
Constraint Processing.
Morgan Kaufmann.
-
Dechter [2019]
Dechter, R. [2019].
Reasoning with Probabilistic and Deterministic Graphical
Models.
Morgan & Claypool, 2nd edition.
-
Dechter and Pearl [1985]
Dechter, R. and Pearl, J. [1985].
Generalized best-first search strategies and the optimality of A*.
Journal of the Association for Computing Machinery,
32(3):505–536.
-
Dellaert et al. [1999]
Dellaert, F., Fox, D., Burgard, W., and Thrun, S. [1999].
Monte Carlo localization for mobile robots.
In IEEE International Conference on Robotics and Automation
(ICRA).
-
Delling et al. [2015]
Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. F. [2015].
Customizable route planning in road networks.
Transportation Science, 51(2):566–591.
https://doi.org/10.1287/trsc.2014.0579.
-
Dempster et al. [1977]
Dempster, A., Laird, N., and Rubin, D. [1977].
Maximum liklihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B, 39:1–38.
With discussion.
-
Deng et al. [2009]
Deng, J., et al. [2009].
ImageNet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition Conference (CVPR).
-
Denil et al. [2014]
Denil, M., Matheson, D., and de Freitas, N. [2014].
Narrowing the gap: Random forests in theory and in practice.
In International Conference on Machine Learning (ICML).
-
Devlin et al. [2019]
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. [2019].
BERT: Pre-training of deep bidirectional transformers for language
understanding.
In 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp.
4171–4186.
http://dx.doi.org/10.18653/v1/N19-1423.
-
Dietterich [2000a]
Dietterich, T. G. [2000a].
An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization.
Machine Learning, 40(2):139–158.
-
Dietterich [2000b]
Dietterich, T. G. [2000b].
Hierarchical reinforcement learning with the MAXQ value function
decomposition.
Journal of Artificial Intelligence Research, 13:227–303.
-
Dietterich [2002]
Dietterich, T. G. [2002].
Ensemble learning.
In Arbib, M. (ed.), The Handbook of Brain Theory and Neural
Networks, pp. 405–408. MIT Press, 2nd edition.
-
Dijkstra [1959]
Dijkstra, E. W. [1959].
A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271.
https://doi.org/10.1007/BF01386390.
-
Dijkstra [1976]
Dijkstra, E. W. [1976].
A Discipline of Programming.
Prentice-Hall.
-
Dolgov et al. [2010]
Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. [2010].
Path planning for autonomous vehicles in unknown semi-structured
environments.
The International Journal of Robotics Research,
29(5):485–501.
http://dx.doi.org/10.1177/0278364909359210.
-
Domingos and Lowd [2009]
Domingos, P. and Lowd, D. [2009].
Markov Logic: An Interface Layer for Artificial Intelligence.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00206ED1V01Y200907AIM007.
-
Doucet et al. [2001]
Doucet, A., de Freitas, N., and Gordon, N. (eds.) [2001].
Sequential Monte Carlo in Practice.
Springer-Verlag.
-
Doyle [1979]
Doyle, J. [1979].
A truth maintenance system.
AI Memo 521, MIT AI Laboratory.
-
Dresner and Stone [2008]
Dresner, K. and Stone, P. [2008].
A multiagent approach to autonomous intersection management.
Journal of Artificial Intelligence Research, 31:591–656.
-
du Boulay et al. [2023]
du Boulay, B., Mitrovic, T., and Yacef, K. (eds.) [2023].
Handbook of Artificial Intelligence in Education.
Edward Elgar.
-
Dua and Graff [2017]
Dua, D. and Graff, C. [2017].
UCI machine learning repository.
http://archive.ics.uci.edu/ml.
-
Duda et al. [2001]
Duda, R. O., Hart, P. E., and Stork, D. G. [2001].
Pattern Classification.
Wiley-Interscience, 2nd edition.
-
Dung [1995]
Dung, P. [1995].
On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and -person games.
Artificial Intelligence, 77(2):321–357.
-
Dzeroski et al. [2001]
Dzeroski, S., De Raedt, L., and Driessens, K. [2001].
Relational reinforcement learning.
Machine Learning,, 43:7–52.
-
Einstein [1934]
Einstein, A. [1934].
On the method of theoretical physics.
Philosophy of Science, 1(2):163–169.
-
Eubanks [2018]
Eubanks, V. [2018].
Automating Inequality: How High-Tech Tools Profile, Police, and
Punish the Poor.
St. Martin’s Publishing Group.
-
European Commission [2021]
European Commission [2021].
The general data protection regulation.
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu˙en.
-
European Commission [2022a]
European Commission [2022a].
AI liability directive.
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739342/EPRS˙BRI(2023)739342˙EN.pdf.
-
European Commission [2022b]
European Commission [2022b].
The artificial intelligence act.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.
-
European Commission [2022c]
European Commission [2022c].
The digital services act package.
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package.
-
European Commission [2022d]
European Commission [2022d].
New liability rules on products and AI to protect consumers.
https://ec.europa.eu/commission/presscorner/detail/en/ip˙22˙5807.
-
Falco et al. [2021]
Falco, G., et al. [2021].
Governing AI safety through independent audits.
Nature Machine Intelligence, 3(7):566–571.
http://dx.doi.org/10.1038/s42256-021-00370-7.
-
Fanshel and Bush [1970]
Fanshel, S. and Bush, J. [1970].
Health-status index and its application to health-services outcomes.
Operations Research, 18.
-
Fatemi et al. [2020]
Fatemi, B., Taslakian, P., Vazquez, D., and Poole, D. [2020].
Knowledge hypergraphs: Prediction beyond binary relations.
In 29th International Joint Conference on Artificial
Intelligence (IJCAI).
-
Fedus et al. [2021]
Fedus, W., Zoph, B., and Shazeer, N. [2021].
Switch transformers: Scaling to trillion parameter models with simple
and efficient sparsity.
http://dx.doi.org/10.48550/arXiv.2101.03961.
-
Fellegi and Sunter [1969]
Fellegi, I. and Sunter, A. [1969].
A theory for record linkage.
Journal of the American Statistical Association,
64(328):1183–1280.
-
Felner et al. [2004]
Felner, A., Korf, R. E., and Hanan, S. [2004].
Additive pattern database heuristics.
Journal of Artificial Intelligence Research, 22:279–318.
-
Feurer and Hutter [2019]
Feurer, M. and Hutter, F. [2019].
Hyperparameter optimization.
In Automated Machine Learning. Springer.
http://dx.doi.org/https://doi.org/10.1007/978-3-030-05318-5˙1.
-
Fikes and Nilsson [1971]
Fikes, R. E. and Nilsson, N. J. [1971].
STRIPS: A new approach to the application of theorem proving to
problem solving.
Artificial Intelligence, 2(3–4):189–208.
-
Foot [1967]
Foot, P. [1967].
The problem of abortion and the doctrine of the double effect.
Oxford Review, 5:5–15.
https://philpapers.org/archive/FOOTPO-2.pdf.
-
Forbus [2019]
Forbus, K. [2019].
Qualitative Representations: How People Reason and Learn about
the Continuous World.
MIT Press.
-
Forbus and Hinrich [2017]
Forbus, K. D. and Hinrich, T. [2017].
Analogy and relational representations in the companion cognitive
architecture.
AI Magazine, 38(4):34–42.
http://dx.doi.org/10.1609/aimag.v38i4.2743.
-
Ford [2021]
Ford, M. [2021].
Rule of the Robots: How Artificial Intelligence Will Transform
Everything.
John Murray Press.
-
François-Lavet et al. [2018]
François-Lavet, V., et al. [2018].
An introduction to deep reinforcement learning.
CoRR, abs/1811.12560.
http://arxiv.org/abs/1811.12560.
-
Freuder and Mackworth [2006]
Freuder, E. C. and Mackworth, A. K. [2006].
Constraint satisfaction: An emerging paradigm.
In Rossi, F., Van Beek, P., and Walsh, T. (eds.), Handbook of
Constraint Programming, pp. 13–28. Elsevier.
-
Friedman [2001]
Friedman, J. H. [2001].
Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232.
http://www.jstor.org/stable/2699986.
-
Friedman et al. [1997]
Friedman, N., Greiger, D., and Goldszmidt, M. [1997].
Bayesian network classifiers.
Machine Learning, 29:103–130.
-
Gabrilovich et al. [2014]
Gabrilovich, E., et al. [2014].
Knowledge vault: A web-scale approach to probabilistic knowledge
fusion.
In 20th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining.
-
Gal and Grosz [2022]
Gal, K. and Grosz, B. J. [2022].
Multi-agent systems: Technical & ethical challenges of functioning
in a mixed group.
Daedalus.
-
Galton [1886]
Galton, F. [1886].
Regression towards mediocrity in hereditary stature.
Journal of the Anthropological Institute, 15:246–263.
http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf.
-
Gangemi et al. [2003]
Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. [2003].
Sweetening WordNet with DOLCE.
AI Magazine, 24(3):13–24.
-
Garcia-Molina et al. [2009]
Garcia-Molina, H., Ullman, J. D., and Widom, J. [2009].
Database Systems: The Complete Book.
Prentice Hall, 2nd edition.
-
Gardner [1985]
Gardner, H. [1985].
The Mind’s New Science.
Basic Books.
-
Gebru et al. [2021]
Gebru, T., et al. [2021].
Datasheets for datasets.
Communication of the ACM, 64(12):86–92.
http://dx.doi.org/10.1145/3458723.
-
Geffner and Bonet [2013]
Geffner, H. and Bonet, B. [2013].
A Concise Introduction to Models and Methods for Automated
Planning.
Springer.
http://dx.doi.org/doi:10.2200/S00513ED1V01Y201306AIM022.
-
Geffner et al. [2022]
Geffner, H., Dechter, R., and Halpern, J. Y. (eds.) [2022].
Probabilistic and Causal Inference: The Works of Judea Pearl.
ACM Books.
-
Gelman et al. [2013]
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. [2013].
Bayesian Data Analysis.
Chapman & Hall/CRC, 3rd edition.
http://www.stat.columbia.edu/˜gelman/book/.
-
Gelman et al. [2020]
Gelman, A., Hill, J., and Vehtari, A. [2020].
Regression and Other Stories.
Cambridge University Press.
-
Genesereth and Thielscher [2014]
Genesereth, M. and Thielscher, M. [2014].
General Game Playing.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00564ED1V01Y201311AIM024.
-
Gers et al. [2000]
Gers, F. A., Schmidhuber, J., and Cummins, F. [2000].
Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10):2451–2471.
http://dx.doi.org/https://doi.org/10.1162/089976600300015015.
-
Getoor and Taskar [2007]
Getoor, L. and Taskar, B. (eds.) [2007].
Introduction to Statistical Relational Learning.
MIT Press.
-
Ghahramani [2015]
Ghahramani, Z. [2015].
Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452–459.
http://dx.doi.org/10.1038/nature14541.
-
Ghallab et al. [2004]
Ghallab, M., Nau, D., and Traverso, P. [2004].
Automated Planning: Theory and Practice.
Elsevier.
-
Gibbard [1973]
Gibbard, A. [1973].
Manipulation of voting schemes: A general result.
Econometrica, 41:587–601.
-
Gil et al. [2017]
Gil, Y., et al. [2017].
Towards continuous scientific data analysis and hypothesis evolution.
In Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17).
http://www.isi.edu/˜gil/papers/gil-etal-aaai17.pdf.
-
Gil et al. [2019]
Gil, Y., et al. [2019].
Intelligent systems for geosciences: An essential research agenda.
Communications of the ACM, 62.
http://dx.doi.org/10.1145/3192335.
-
Glorot and Bengio [2010]
Glorot, X. and Bengio, Y. [2010].
Understanding the difficulty of training deep feedforward neural
networks.
In Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256.
https://proceedings.mlr.press/v9/glorot10a.html.
-
Glorot et al. [2011]
Glorot, X., Bordes, A., and Bengio, Y. [2011].
Deep sparse rectifier neural networks.
In 14th International Conference on Artificial Intelligence and
Statistics, pp. 315–323.
-
Goble et al. [2020]
Goble, C., et al. [2020].
FAIR Computational Workflows.
Data Intelligence, 2(1-2):108–121.
http://dx.doi.org/10.1162/dint˙a˙00033.
-
Goldberg [2002]
Goldberg, D. E. [2002].
The Design of Innovation: Lessons from and for Competent
Genetic Algorithms.
Addison-Wesley.
-
Goldberg [2016]
Goldberg, Y. [2016].
A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, 57:345–420.
http://dx.doi.org/doi:10.1613/jair.4992.
-
Gomes et al. [2019]
Gomes, C., et al. [2019].
Computational sustainability: Computing for a better world and a
sustainable future.
Communication of the ACM, 62(9):56–65.
http://dx.doi.org/10.1145/3339399.
-
Good [1965]
Good, I. J. [1965].
Speculations concerning the first ultraintelligent machine.
In Alt, F. and Ruminoff, M. (eds.), Advances in Computers,
volume 6. Academic Press.
-
Goodfellow et al. [2016]
Goodfellow, I., Bengio, Y., and Courville, A. [2016].
Deep Learning.
MIT Press.
http://www.deeplearningbook.org.
-
Goodfellow et al. [2014]
Goodfellow, I. J., et al. [2014].
Generative adversarial networks.
In Advances in Neural Information Processing Systems 27 (NIPS
2014).
http://dx.doi.org/10.48550/arXiv.1406.2661.
-
Gordon et al. [2021]
Gordon, M. L., et al. [2021].
The disagreement deconvolution: Bringing machine learning performance
metrics in line with reality.
In 2021 CHI Conference on Human Factors in Computing Systems.
http://dx.doi.org/10.1145/3411764.3445423.
-
Green [2022]
Green, B. [2022].
The flaws of policies requiring human oversight of government
algorithms.
Computer Law and Security Review, 45:105681.
http://dx.doi.org/https://doi.org/10.1016/j.clsr.2022.105681.
-
Green [1969]
Green, C. [1969].
Application of theorem proving to problem solving.
In 1st International Joint Conference on Artificial
Intelligence, pp. 219–237.
-
Grosz [2012]
Grosz, B. [2012].
What question would Turing pose today?
AI Magazine, 33(4):73.
http://dx.doi.org/10.1609/aimag.v33i4.2441.
-
Grosz [2018]
Grosz, B. J. [2018].
Smart enough to talk with us? Foundations and challenges for
dialogue capable AI systems.
Computational Linguistics, 44(1):1–15.
http://dx.doi.org/10.1162/COLI˙a˙00313.
-
Grünwald [2007]
Grünwald, P. D. [2007].
The Minimum Description Length Principle.
MIT Press.
-
Gunkel [2018]
Gunkel, D. [2018].
Robot Rights.
MIT Press.
-
Halevy et al. [2009]
Halevy, A., Norvig, P., and Pereira, F. [2009].
The unreasonable effectiveness of data.
IEEE Intelligent Systems, 24(2):8–12.
-
Halpern [2003]
Halpern, J. Y. [2003].
Reasoning about Uncertainty.
MIT Press.
-
Hamilton [2020]
Hamilton, W. L. [2020].
Graph Representation Learning.
Morgan & Claypool.
-
Hardin [1968]
Hardin, G. [1968].
The tragedy of the commons: The population problem has no technical
solution; it requires a fundamental extension in morality.
Science, 162(3859):1243–1248.
-
Harper and Konstan [2015]
Harper, F. M. and Konstan, J. A. [2015].
The MovieLens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems, 5(4).
http://dx.doi.org/10.1145/2827872.
-
Hart et al. [1968]
Hart, P. E., Nilsson, N. J., and Raphael, B. [1968].
A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107.
-
Hart and Edwards [1961]
Hart, T. P. and Edwards, D. J. [1961].
The tree prune (TP) algorithm.
Memo 30, MIT Artificial Intelligence Project.
-
Haslum et al. [2019]
Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. [2019].
An Introduction to the Planning Domain Definition Language.
Morgan & Claypool.
https://doi.org/10.2200/S00900ED2V01Y201902AIM042.
-
Hastie et al. [2009]
Hastie, T., Tibshirani, R., and Friedman, J. [2009].
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction.
Springer, 2nd edition.
-
Haugeland [1985]
Haugeland, J. [1985].
Artificial Intelligence: The Very Idea.
MIT Press.
-
Haugeland [1997]
Haugeland, J. (ed.) [1997].
Mind Design II: Philosophy, Psychology, Artificial
Intelligence.
MIT Press, revised and enlarged edition.
-
Hayes [1973]
Hayes, P. J. [1973].
Computation and deduction.
In 2nd Symposium on Mathematical Foundations of Computer
Science, pp. 105–118. Czechoslovak Academy of Sciences.
-
He et al. [2015]
He, K., Zhang, X., Ren, S., and Sun, J. [2015].
Deep residual learning for image recognition.
CoRR, abs/1512.03385.
http://arxiv.org/abs/1512.03385.
-
Heath and Bizer [2011]
Heath, T. and Bizer, C. [2011].
Linked Data: Evolving the Web into a Global Data Space.
Springer.
-
Heckerman [1999]
Heckerman, D. [1999].
A tutorial on learning with Bayesian networks.
In Jordan, M. (ed.), Learning in Graphical Models. MIT Press.
-
Hendler et al. [2002]
Hendler, J., Berners-Lee, T., and Miller, E. [2002].
Integrating applications on the semantic web.
Journal of the Institute of Electrical Engineers of Japan,
122(10):676–680.
http://www.w3.org/2002/07/swint.
-
Henrion [1988]
Henrion, M. [1988].
Propagating uncertainty in Bayesian networks by probabilistic logic
sampling.
In Lemmer, J. F. and Kanal, L. N. (eds.), Uncertainty in
Artificial Intelligence 2, pp. 149–163. Elsevier Science.
-
Hewitt [1969]
Hewitt, C. [1969].
Planner: A language for proving theorems in robots.
In 1st International Joint Conference on Artificial
Intelligence, pp. 295–301.
-
Hinton et al. [2012a]
Hinton, G., et al. [2012a].
Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups.
Signal Processing Magazine, IEEE, 29(6):82–97.
http://dx.doi.org/10.1109/MSP.2012.2205597.
-
Hinton et al. [2012b]
Hinton, G. E., et al. [2012b].
Improving neural networks by preventing co-adaptation of feature
detectors.
CoRR, abs/1207.0580.
http://arxiv.org/abs/1207.0580.
-
Hitchcock [1927]
Hitchcock, F. L. [1927].
The expression of a tensor or a polyadic as a sum of products.
Studies in Applied Mathematics, 6(1–4):164–189.
-
Hitzler et al. [2012]
Hitzler, P., et al. (eds.) [2012].
OWL 2 Web Ontology Language Primer (Second Edition).
W3C Recommendation 11 December 2012.
http://www.w3.org/TR/owl2-primer/.
-
Ho et al. [2020]
Ho, J., Jain, A., and Abbeel, P. [2020].
Denoising diffusion probabilistic models.
In Advances in Neural Information Processing Systems,
volume 33, pp. 6840–6851.
https://proceedings.neurips.cc/paper˙files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
-
Hochreiter and Schmidhuber [1997]
Hochreiter, S. and Schmidhuber, J. [1997].
Long short-term memory.
Neural Computation, 9:1735–1780.
-
Hoffart et al. [2013]
Hoffart, J., Suchanek, F., Berberich, K., and Weikum, G. [2013].
YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia.
Artificial Intelligence, 194:28–61.
-
Hofstadter [2022]
Hofstadter, D. [2022].
Artificial neural networks today are not conscious, according to
Douglas Hofstadter.
The Economist, June 11th 2022.
-
Hogan et al. [2021]
Hogan, A. et al. [2021].
Knowledge graphs.
ACM Computing Surveys, 54(4).
https://doi.org/10.1145/3447772.
-
Holland [1975]
Holland, J. H. [1975].
Adaption in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
University of Michigan Press.
-
Holling [1973]
Holling, C. S. [1973].
Resilience and stability of ecological systems.
Annual Review of Ecology and Systematics, 4(1):1–23.
http://dx.doi.org/10.1146/annurev.es.04.110173.000245.
-
Hoos and Stützle [2004]
Hoos, H. H. and Stützle, T. [2004].
Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann.
-
Horvitz [1989]
Horvitz, E. J. [1989].
Reasoning about beliefs and actions under computational resource
constraints.
In Kanal, L., Levitt, T., and Lemmer, J. (eds.), Uncertainty in
Artificial Intelligence 3, pp. 301–324. Elsevier.
-
Horvitz [2006]
Horvitz, E. J. [2006].
Eric Horvitz forecasts the future.
New Scientist, 2578:72.
-
Howard and Matheson [1984]
Howard, R. A. and Matheson, J. E. [1984].
Influence diagrams.
In Howard, R. A. and Matheson, J. E. (eds.), The Principles and
Applications of Decision Analysis. Strategic Decisions Group.
-
Howson and Urbach [2006]
Howson, C. and Urbach, P. [2006].
Scientific Reasoning: The Bayesian Approach.
Open Court, 3rd edition.
-
Huang and Valtorta [2006]
Huang, Y. and Valtorta, M. [2006].
Pearl’s calculus of intervention is complete.
In Conference on Uncertainty in Artificial Intelligence, pp.
217–224.
-
Hume [1739–40]
Hume, D. [1739–40].
A Treatise of Human Nature: Being an Attempt to Introduce the
Experimental Method of Reasoning into Moral Subjects.
https://gutenberg.org/files/4705/4705-h/4705-h.htm.
-
Hursthouse and Pettigrove [2018]
Hursthouse, R. and Pettigrove, G. [2018].
Virtue ethics.
In Zalta, E. N. (ed.), The Stanford Encyclopedia of
Philosophy. Winter 2018 edition.
https://plato.stanford.edu/archives/win2018/entries/ethics-virtue/.
-
Hutter et al. [2019]
Hutter, F., Kotthoff, L., and Vanschoren, J. (eds.) [2019].
Automated Machine Learning Methods, Systems, Challenges.
Springer.
-
IEEE [2020]
IEEE [2020].
IEEE code of ethics.
https://www.ieee.org/about/corporate/governance/p7-8.html.
-
IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems [2019]
IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems
[2019].
Ethically aligned design: A vision for prioritizing human well-being
with autonomous and intelligent systems.
https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html.
-
IHTSDO [2016]
IHTSDO [2016].
SNOMED CT Starter Guide.
International Health Terminology Standards Development Organisation.
http://snomed.org.
-
Jackson [2011]
Jackson, M. O. [2011].
A Brief Introduction to the Basics of Game Theory.
SSRN.
http://dx.doi.org/10.2139/ssrn.1968579.
-
Jacobs and Wallach [2021]
Jacobs, A. Z. and Wallach, H. [2021].
Measurement and fairness.
In 2021 ACM Conference on Fairness, Accountability, and
Transparency, FAccT ’21, pp. 375–385.
http://dx.doi.org/10.1145/3442188.3445901.
-
Jahrer et al. [2010]
Jahrer, M., Töscher, A., and Legenstein, R. [2010].
Combining predictions for accurate recommender systems.
In 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 693–702.
http://dx.doi.org/10.1145/1835804.1835893.
-
Jannach and Bauer [2020]
Jannach, D. and Bauer, C. [2020].
Escaping the McNamara fallacy: Towards more impactful recommender
systems research.
AI Magazine, 41(4):79–95.
http://dx.doi.org/10.1609/aimag.v41i4.5312.
-
Jannach et al. [2021]
Jannach, D., Pu, P., Ricci, F., and Zanker, M. [2021].
Recommender systems: Past, present, future.
AI Magazine, 42(3):3–6.
http://dx.doi.org/10.1609/aimag.v42i3.18139.
-
Janowicz et al. [2015]
Janowicz, K., van Harmelen, F., Hendler, J. A., and Hitzler, P. [2015].
Why the data train needs semantic rails.
AI Magazine, 36(1):5–14.
-
Jarrett et al. [2009]
Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. [2009].
What is the best multi-stage architecture for object recognition?
In 2009 IEEE 12th International Conference on Computer Vision.
http://dx.doi.org/10.1109/ICCV.2009.5459469.
-
Jaynes [2003]
Jaynes, E. T. [2003].
Probability Theory: The Logic of Science.
Cambridge University Press.
https://bayes.wustl.edu/etj/prob/book.pdf.
-
Jordan [2019]
Jordan, M. I. [2019].
Artificial intelligence – the revolution hasn’t happened yet.
Harvard Data Science Review, 1(1).
https://hdsr.mitpress.mit.edu/pub/wot7mkc1.
-
Joy [2000]
Joy, B. [2000].
Why the future doesn’t need us.
Wired.
http://www.wired.com/wired/archive/8.04/joy.html.
-
Jozefowicz et al. [2015]
Jozefowicz, R., Zaremba, W., and Sutskever, I. [2015].
An empirical exploration of recurrent network architectures.
In 32nd International Conference on Machine Learning, ICML’15,
pp. 2342–2350.
-
Jumper et al. [2021]
Jumper, J., et al. [2021].
Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583–589.
http://dx.doi.org/10.1038/s41586-021-03819-2.
-
Jurafsky and Martin [2023]
Jurafsky, D. and Martin, J. H. [2023].
Speech and Language Processing.
Unpublished, 3rd edition.
https://web.stanford.edu/˜jurafsky/slp3/.
-
Kahneman [2011]
Kahneman, D. [2011].
Thinking, Fast and Slow.
Allen Lane.
-
Kakas and Denecker [2002]
Kakas, A. and Denecker, M. [2002].
Abduction in logic programming.
In Kakas, A. and Sadri, F. (eds.), Computational Logic: Logic
Programming and Beyond, pp. 402–436. Springer-Verlag.
-
Kambhampati et al. [1995]
Kambhampati, S., Knoblock, C. A., and Yang, Q. [1995].
Planning as refinement search: A unified framework for evaluating
design tradeoffs in partial order planning.
Artificial Intelligence, 76:167–238.
-
Kant [1787]
Kant, I. [1787].
The Critique of Pure Reason.
https://gutenberg.org/ebooks/4280.
-
Karimi et al. [2016]
Karimi, H., Nutini, J., and Schmidt, M. [2016].
Linear convergence of gradient and proximal-gradient methods under
the Polyak–Łojasiewicz condition.
In European Conference on Machine Learning (ECML).
-
Karpathy [2015]
Karpathy, A. [2015].
The unreasonable effectiveness of recurrent neural networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
-
Katoch et al. [2021]
Katoch, S., Chauhan, S. S., and Kumar, V. [2021].
A review on genetic algorithm: past, present, and future.
Multimedia Tools and Applications, 80(5):8091–8126.
http://dx.doi.org/10.1007/s11042-020-10139-6.
-
Kautz and Selman [1996]
Kautz, H. and Selman, B. [1996].
Pushing the envelope: Planning, propositional logic and stochastic
search.
In 13th National Conference on Artificial Intelligence, pp.
1194–1201.
-
Kazemi and Poole [2018]
Kazemi, S. M. and Poole, D. [2018].
SimplE embedding for link prediction in knowledge graphs.
In 32nd Conference on Neural Information Processing Systems.
-
Ke et al. [2017]
Ke, G., et al. [2017].
LightGBM: A highly efficient gradient boosting decision tree.
In Advances in Neural Information Processing Systems 30.
-
Kearns et al. [2002]
Kearns, M., Mansour, Y., and Ng, A. [2002].
A sparse sampling algorithm for near-optimal planning in large
Markovian decision processes.
Machine Learning, 49:193–208.
-
Keeney and Raiffa [1976]
Keeney, R. L. and Raiffa, H. [1976].
Decisions with Multiple Objectives.
Wiley.
-
Kendall and McGuinness [2019]
Kendall, E. F. and McGuinness, D. L. [2019].
Ontology Engineering.
Springer.
http://dx.doi.org/10.1007/978-3-031-79486-5.
-
Khardon and Sanner [2021]
Khardon, R. and Sanner, S. [2021].
Stochastic planning and lifted inference.
In Van den Broeck, G., Kersting, K., Natarajan, S., and Poole, D.
(eds.), Introduction to Lifted Inference. MIT Press.
-
King [2007]
King, G. [2007].
An introduction to the dataverse network as an infrastructure for
data sharing.
Sociological Methods and Research, 36(2):173–199.
-
King et al. [2004]
King, R., et al. [2004].
Functional genomic hypothesis generation and experimentation by a
robot scientist.
Nature, 427:247–252.
http://www.doc.ic.ac.uk/˜shm/Papers/Oliver˙Jan15˙hi.pdf.
-
King et al. [2009a]
King, R. D., et al. [2009a].
The automation of science.
Science, 324(5923):85–89.
http://dx.doi.org/10.1126/science.1165620.
-
King et al. [2009b]
King, R. D., et al. [2009b].
The robot scientist Adam.
Computer, 42(8):46–54.
http://dx.doi.org/10.1109/MC.2009.270.
-
Kirkpatrick et al. [1983]
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. [1983].
Optimization by simulated annealing.
Science, 220:671–680.
-
Kirsh [1991a]
Kirsh, D. [1991a].
Foundations of AI: The big issues.
Artificial Intelligence, 47:3–30.
-
Kirsh [1991b]
Kirsh, D. [1991b].
Today the earwig, tomorrow man?
Artificial Intelligence, 47:161–184.
-
Kleinberg et al. [2020]
Kleinberg, J., Ludwig, J., Mullainathan, S., and Sunstein, C. R. [2020].
Algorithms as discrimination detectors.
In National Academy of Sciences.
-
Knoll et al. [2008]
Knoll, B., et al. [2008].
AIspace: Interactive tools for learning artificial intelligence.
In AAAI 2008 AI Education Workshop, p. 3.
-
Knox and Stone [2009]
Knox, W. B. and Stone, P. [2009].
Interactively shaping agents via human reinforcement: The TAMER
framework.
In Fifth International Conference on Knowledge Capture, pp.
9–16.
http://dx.doi.org/10.1145/1597735.1597738.
-
Knublauch et al. [2006]
Knublauch, H., Oberle, D., Tetlow, P., and Wallace, E. [2006].
A semantic web primer for object-oriented software developers.
Working Group Note 9 March 2006, W3C.
http://www.w3.org/TR/sw-oosd-primer/.
-
Knuth and Moore [1975]
Knuth, D. E. and Moore, R. W. [1975].
An analysis of alpha-beta pruning.
Artificial Intelligence, 6(4):293–326.
-
Kochenderfer [2015]
Kochenderfer, M. J. [2015].
Decision Making Under Uncertainty.
MIT Press.
-
Kochenderfer et al. [2022]
Kochenderfer, M. J., Wheeler, T. A., and Wray, K. H. [2022].
Algorithms for Decision Making.
MIT Press.
https://algorithmsbook.com.
-
Kocsis and Szepesvári [2006]
Kocsis, L. and Szepesvári, C. [2006].
Bandit based Monte-Carlo planning.
In 17th European Conference on Machine Learning (ECML), pp.
282–293.
-
Koller and Friedman [2009]
Koller, D. and Friedman, N. [2009].
Probabilisitic Graphical Models: Principles and Techniques.
MIT Press.
-
Koller and Milch [2003]
Koller, D. and Milch, B. [2003].
Multi-agent influence diagrams for representing and solving games.
Games and Economic Behavior, 45(1):181–221.
http://people.csail.mit.edu/milch/papers/geb-maid.pdf.
-
Koopmans [1972]
Koopmans, T. [1972].
Representations of preference orderings over time.
In McGuire, C. and Radner, R. (eds.), Decisions and
Organization. North-Holland.
-
Koren and Bell [2011]
Koren, Y. and Bell, R. [2011].
Advances in collaborative filtering.
In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (eds.),
Recommender Systems Handbook, pp. 145–186. Springer.
http://dx.doi.org/10.1007/978-0-387-85820-3˙5.
-
Koren et al. [2009]
Koren, Y., Bell, R., and Volinsky, C. [2009].
Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37.
-
Korf [1985]
Korf, K. E. [1985].
Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109.
-
Kowalski [1979]
Kowalski, R. [1979].
Algorithm = logic + control.
Communications of the ACM, 22:424–431.
-
Kowalski [1974]
Kowalski, R. A. [1974].
Predicate logic as a programming language.
In Information Processing 74, pp. 569–574. North-Holland.
-
Kowalski [1988]
Kowalski, R. A. [1988].
The early history of logic programming.
Communications of the ACM, 31(1):38–43.
-
Kowalski [2014]
Kowalski, R. A. [2014].
Logic for Problem Solving, Revisited.
Books on Demand.
-
Kramár et al. [2022]
Kramár, J., et al. [2022].
Negotiation and honesty in artificial intelligence methods for the
board game of diplomacy.
Nature Communications, 13(1):7214.
http://dx.doi.org/10.1038/s41467-022-34473-5.
-
Krizhevsky et al. [2012]
Krizhevsky, A., Sutskever, I., and Hinton, G. [2012].
Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25, pp.
1090–1098.
-
Krötzsch [2012]
Krötzsch, M. [2012].
OWL 2 Profiles: An introduction to lightweight ontology languages.
In Eiter, T. and Krennwallner, T. (eds.), 8th Reasoning Web
Summer School, Vienna, Austria, pp. 112–183. Springer.
http://korrekt.org/page/OWL˙2˙Profiles.
-
Kuppe et al. [2019]
Kuppe, M. A., Lamport, L., and Ricketts, D. [2019].
The TLA toolbox.
Electronic Proceedings in Theoretical Computer Science,
310:50–62.
http://dx.doi.org/10.4204/eptcs.310.6.
-
Lacroix et al. [2018]
Lacroix, T., Usunier, N., and Obozinski, G. [2018].
Canonical tensor decomposition for knowledge base completion.
In 35th International Conference on Machine Learning (ICML).
-
Lakshmanan et al. [2021]
Lakshmanan, V., Görner, M., and Gillard, R. [2021].
Practical Machine Learning for Computer Vision: End-to-End
Machine Learning for Images.
O’Reilly.
-
Lally et al. [2012]
Lally, A., et al. [2012].
Question analysis: How Watson reads a clue.
IBM Journal of Research and Development, 56(3/4).
-
Lamport [2002]
Lamport, L. [2002].
Specifying Systems: The TLA Language and Tools for Hardware
and Software Engineers.
Addison-Wesley Longman.
-
Langley et al. [1992]
Langley, P., Iba, W., and Thompson, K. [1992].
An analysis of Bayesian classifiers.
In 10th National Conference on Artificial Intelligence, pp.
223–228.
-
Langton [1997]
Langton, C. G. [1997].
Artificial Life: An Overview.
MIT Press.
-
Laplace [1812]
Laplace, P. [1812].
Théorie Analytique de Probabilités.
Courcier.
-
Latombe [1991]
Latombe, J.-C. [1991].
Robot Motion Planning.
Kluwer Academic.
-
Lawler and Wood [1966]
Lawler, E. L. and Wood, D. E. [1966].
Branch-and-bound methods: A survey.
Operations Research, 14(4):699–719.
-
LeCun et al. [2015]
LeCun, Y., Bengio, Y., and Hinton, G. [2015].
Deep learning.
Nature, 521(7553):436–444.
-
LeCun et al. [1998a]
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. [1998a].
Gradient-based learning applied to document recognition.
IEEE, 86(11):2278–2324.
http://dx.doi.org/10.1109/5.726791.
-
LeCun et al. [1998b]
LeCun, Y., Bottou, L., Orr, G., and Muller, K. [1998b].
Efficient backprop.
In Orr, G. and Muller, K.-R. (eds.), Neural Networks: Tricks of
the Trade. Springer.
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.
-
Lehman et al. [2018]
Lehman, J., Clune, J., Misevic, D., et al. [2018].
The surprising creativity of digital evolution: A collection of
anecdotes from the evolutionary computation and artificial life research
communities.
CoRR.
http://arxiv.org/abs/1803.03453.
-
Leibniz [1677]
Leibniz, G. W. [1677].
The Method of Mathematics: Preface to the General Science.
Selections reprinted by Chrisley and Begeer [2000].
-
Leibniz [1705]
Leibniz, G. W. [1705].
New Essays on Human Understanding.
Book 3.
www.earlymoderntexts.com.
-
Lenat and Feigenbaum [1991]
Lenat, D. B. and Feigenbaum, E. A. [1991].
On the thresholds of knowledge.
Artificial Intelligence, 47:185–250.
-
Lepikhin et al. [2021]
Lepikhin, D., et al. [2021].
GShard: Scaling giant models with conditional computation and
automatic sharding.
In International Conference on Learning Representations.
https://openreview.net/pdf?id=qrwe7XHTmYb.
-
Lertvittayakumjorn and Toni [2021]
Lertvittayakumjorn, P. and Toni, F. [2021].
Explanation-based human debugging of NLP models: A survey.
Transactions of the Association for Computational Linguistics,
9:1508–1528.
http://dx.doi.org/10.1162/tacl˙a˙00440.
-
Levesque [1984]
Levesque, H. J. [1984].
Foundations of a functional approach to knowledge representation.
Artificial Intelligence, 23(2):155–212.
-
Levesque [2012]
Levesque, H. J. [2012].
Thinking as Computation.
MIT Press.
-
Levesque [2014]
Levesque, H. J. [2014].
On our best behaviour.
Artificial Intelligence, 212:27–35.
-
Levy [2021]
Levy, R. [2021].
Social media, news consumption, and polarization: Evidence from a
field experiment.
American Economic Review, 111(3):831–70.
http://dx.doi.org/10.1257/aer.20191777.
-
Leyton-Brown et al. [2017]
Leyton-Brown, K., Milgrom, P. R., and Segal, I. [2017].
Economics and computer science of a radio spectrum reallocation.
National Academy of Sciences, 114:7202 – 7209.
-
Leyton-Brown and Shoham [2008]
Leyton-Brown, K. and Shoham, Y. [2008].
Essentials of Game Theory.
Morgan & Claypool.
-
Li [2018]
Li, Y. [2018].
Deep reinforcement learning.
CoRR, abs/1810.06339.
http://arxiv.org/abs/1810.06339.
-
Li et al. [2016]
Li, Y., et al. [2016].
A survey on truth discovery.
SIGKDD Explorations Newsletter, 17(2):1–16.
http://dx.doi.org/10.1145/2897350.2897352.
-
Liao et al. [2021]
Liao, T., Taori, R., Raji, D., and Schmidt, L. [2021].
Are we learning yet? A meta review of evaluation failures across
machine learning.
In Neural Information Processing Systems (NeurIPS) Track on
Datasets and Benchmarks.
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/757b505cfd34c64c85ca5b5690ee5293-Abstract-round2.html.
-
Lin et al. [2017]
Lin, A. Y., Kuehl, K., Schöning, J., and Hecht, B. [2017].
Understanding ”death by GPS”: A systematic study of catastrophic
incidents associated with personal navigation technologies.
In CHI Conference on Human Factors in Computing Systems.
http://dx.doi.org/10.1145/3025453.3025737.
-
Lindholm et al. [2022]
Lindholm, T., et al. [2022].
The Java Virtual Machine Specification: Java SE 19 Edition.
Oracle America, Inc.
https://docs.oracle.com/javase/specs/jvms/se19/jvms19.pdf.
-
Little and Rubin [1987]
Little, R. J. A. and Rubin, D. B. [1987].
Statistical Analysis with Missing Data.
Wiley.
-
Littman et al. [2021]
Littman, M. L., et al. [2021].
Gathering Strength, Gathering Storms: The One Hundred Year
Study on Artificial Intelligence (AI100) 2021 Study Panel Report.
Stanford University.
http://ai100.stanford.edu/2021-report.
-
Liu et al. [2006]
Liu, A. L., et al. [2006].
Indoor wayfinding: Developing a functional interface for individuals
with cognitive impairments.
In 8th International ACM SIGACCESS Conference on Computers and
Accessibility.
-
Lloyd [1987]
Lloyd, J. W. [1987].
Foundations of Logic Programming.
Symbolic Computation Series. Springer-Verlag, 2nd edition.
-
Lloyd [1982]
Lloyd, S. [1982].
Least squares quantization in PCM.
IEEE Transactions on Information Theory, 28(2):129–137.
http://dx.doi.org/10.1109/TIT.1982.1056489.
-
Lopez and Bacchus [2003]
Lopez, A. and Bacchus, F. [2003].
Generalizing GraphPlan by formulating planning as a CSP.
In 18th International Joint Conference Artificial Intelligence
(IJCAI), pp. 954–960.
-
Luenberger [1979]
Luenberger, D. G. [1979].
Introduction to Dynamic Systems: Theory, Models and
Applications.
Wiley.
-
Lum and Isaac [2016]
Lum, K. and Isaac, W. [2016].
To predict and serve?
Significance, 13(5).
-
Lundgren [2023]
Lundgren, B. [2023].
In defense of ethical guidelines.
AI and Ethics.
http://dx.doi.org/10.1007/s43681-022-00244-7.
-
Ma et al. [2022]
Ma, Y., et al. [2022].
Identification of antimicrobial peptides from the human gut
microbiome using deep learning.
Nature Biotechnology, 40(6):921–931.
http://dx.doi.org/10.1038/s41587-022-01226-0.
-
MacKay [2003]
MacKay, D. [2003].
Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.
-
Mackworth [1977a]
Mackworth, A. K. [1977a].
Consistency in networks of relations.
Artificial Intelligence, 8:99–118.
-
Mackworth [1977b]
Mackworth, A. K. [1977b].
On reading sketch maps.
In Fifth International Joint Conference on Artificial
Intelligence, pp. 598–606.
-
Mackworth [1993]
Mackworth, A. K. [1993].
On seeing robots.
In Basu, A. and Li, X. (eds.), Computer Vision: Systems,
Theory, and Applications, pp. 1–13. World Scientific Press.
-
Mackworth [2009]
Mackworth, A. K. [2009].
Agents, bodies, constraints, dynamics and evolution.
AI Magazine.
-
Mackworth [2011]
Mackworth, A. K. [2011].
Architectures and ethics for robots: Constraint satisfaction as a
unitary design framework.
In Anderson, M. and Anderson, S. L. (eds.), Machine Ethics,
pp. 335–360. Cambridge University Press.
http://dx.doi.org/10.1017/CBO9780511978036.024.
-
Mackworth and Zhang [2003]
Mackworth, A. K. and Zhang, Y. [2003].
A formal approach to agent design: An overview of constraint-based
agents.
Constraints, 8(3):229–242.
-
Mackworth [1970]
Mackworth, J. F. [1970].
Vigilance and Attention: A Signal Detection Approach.
Penguin.
-
Mackworth [1948]
Mackworth, N. H. [1948].
The breakdown of vigilance during prolonged visual search.
Quarterly Journal of Experimental Psychology, 1(1):6–21.
http://dx.doi.org/10.1080/17470214808416738.
-
Mahdisoltani et al. [2015]
Mahdisoltani, F., Biega, J., and Suchanek, F. M. [2015].
YAGO3: A knowledge base from multilingual wikipedias.
In Conference on Innovative Data Systems Research (CIDR 2015).
http://suchanek.name/work/publications/cidr2015.pdf.
-
Malthus [1798]
Malthus, T. R. [1798].
An Essay on the Principle of Population: As it Affects the
Future Improvement of Society.
J. Johnson.
-
Manning and Schütze [1999]
Manning, C. and Schütze, H. [1999].
Foundations of Statistical Natural Language Processing.
MIT Press.
-
Marcus and Davis [2019]
Marcus, G. and Davis, E. [2019].
Rebooting AI: Building Artificial Intelligence We Can Trust.
Pantheon.
-
Marlin et al. [2011]
Marlin, B. M., Zemel, R. S., Roweis, S. T., and Slaney, M. [2011].
Recommender systems, missing data and statistical model estimation.
In 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 2686–2691.
-
Matheson [1990]
Matheson, J. E. [1990].
Using influence diagrams to value information and control.
In Oliver, R. M. and Smith, J. Q. (eds.), Influence Diagrams,
Belief Nets and Decision Analysis, chapter 1, pp. 25–48. Wiley.
-
Mausam and Kolobov [2012]
Mausam and Kolobov, A. [2012].
Planning with Markov Decision Processes: An AI Perspective.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00426ED1V01Y201206AIM017.
-
McAllester and Rosenblitt [1991]
McAllester, D. and Rosenblitt, D. [1991].
Systematic nonlinear planning.
In 9th National Conference on Artificial Intelligence, pp.
634–639.
-
McCarthy [1958]
McCarthy, J. [1958].
Programs with common sense.
In Teddington Conference on the Mechanization of Thought
Processes.
http://jmc.stanford.edu/articles/mcc59/mcc59.pdf.
-
McCarthy [1986]
McCarthy, J. [1986].
Applications of circumscription to formalizing common-sense
knowledge.
Artificial Intelligence, 28(1):89–116.
-
McCarthy and Hayes [1969]
McCarthy, J. and Hayes, P. J. [1969].
Some philosophical problems from the standpoint of artificial
intelligence.
In Meltzer, M. and Michie, D. (eds.), Machine Intelligence 4,
pp. 463–502. Edinburgh University Press.
-
McCulloch and Pitts [1943]
McCulloch, W. and Pitts, W. [1943].
A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115–133.
-
McDermott and Hendler [1995]
McDermott, D. and Hendler, J. [1995].
Planning: What it is, what it could be, an introduction to the
special issue on planning and scheduling.
Artificial Intelligence, 76:1–16.
-
McElreath [2020]
McElreath, R. [2020].
Statistical Rethinking: A Bayesian Course with Examples in R
and STAN.
Chapman & Hall.
https://xcelab.net/rm/statistical-rethinking/.
-
McFadden [2000]
McFadden, D. L. [2000].
Prize lecture.
The Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 2000.
https://www.nobelprize.org/prizes/economic-sciences/2000/mcfadden/lecture/.
-
McGuffie and Newhouse [2020]
McGuffie, K. and Newhouse, A. [2020].
The radicalization risks of GPT-3 and advanced neural language
model.
Technical report, Center on Terrorism, Extremism, and
Counterterrorism, Middlebury Institute of International Studies at Monterrey.
https://www.middlebury.edu/institute/sites/www.middlebury.edu.institute/files/2020-09/gpt3-article.pdf.
-
McLuhan [1962]
McLuhan, M. [1962].
The Gutenberg Galaxy: The Making of Typographic Man.
University of Toronto Press.
-
Meir and Rätsch [2003]
Meir, R. and Rätsch, G. [2003].
An introduction to boosting and leveraging.
In Advanced Lectures on Machine Learning, pp. 119–184.
Springer.
-
Michie [1963]
Michie, D. [1963].
Experiments on the mechanisation of game learning. 1.
Characterization of the model and its parameters.
Computer Journal, 1:232–263.
-
Michie et al. [1994]
Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (eds.) [1994].
Machine Learning, Neural and Statistical Classification.
Series in Artificial Intelligence. Ellis Horwood.
-
Mihailidis et al. [2007]
Mihailidis, A., Boger, J., Candido, M., and Hoey, J. [2007].
The use of an intelligent prompting system for people with dementia.
ACM Interactions, 14(4):34–37.
-
Mikolov et al. [2013]
Mikolov, T., Chen, K., Corrado, G., and Dean, J. [2013].
Efficient estimation of word representations in vector space.
http://dx.doi.org/10.48550/arXiv.1301.3781.
-
Milch et al. [2005]
Milch, B., et al. [2005].
BLOG: Probabilistic models with unknown objects.
In 19th International Joint Conference Artificial Intelligence
(IJCAI-05).
-
Minaee et al. [2021]
Minaee, S., et al. [2021].
Deep learning–based text classification: A comprehensive review.
ACM Computing Surveys, 54(3).
http://dx.doi.org/10.1145/3439726.
-
Minsky [1952]
Minsky, M. L. [1952].
A neural-analogue calculator based upon a probability model of
reinforcement.
Technical report, Harvard University Psychological Laboratories.
-
Minsky [1961]
Minsky, M. L. [1961].
Steps towards artificial intelligence.
IEEE, 49:8–30.
http://web.media.mit.edu/˜minsky/papers/steps.html.
-
Minsky [1975]
Minsky, M. L. [1975].
A framework for representing knowledge.
In Winston, P. (ed.), The Psychology of Computer Vision, pp.
211–277. McGraw-Hill.
Alternative version is in Haugeland [1997].
-
Minsky [1986]
Minsky, M. L. [1986].
The Society of Mind.
Simon & Schuster.
-
Minsky and Papert [1988]
Minsky, M. L. and Papert, S. [1988].
Perceptrons: An Introduction to Computational Geometry.
MIT Press, expanded edition.
-
Minton et al. [1992]
Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. [1992].
Minimizing conflicts: A heuristic repair method for constraint
satisfaction and scheduling problems.
Artificial Intelligence, 58(1–3):161–205.
-
Mitchell [1996]
Mitchell, M. [1996].
An Introduction to Genetic Algorithms.
MIT Press.
-
Mitchell [1997]
Mitchell, T. [1997].
Machine Learning.
McGraw-Hill.
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html.
-
Mnih et al. [2015]
Mnih, V. et al. [2015].
Human-level control through deep reinforcement learning.
Nature, 518:529–533.
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html.
-
Mohan [2022]
Mohan, K. [2022].
Causal graphs for missing data: A gentle introduction.
In Probabilistic and Causal Inference: The Works of Judea
Pearl. ACM Books.
-
Mohan et al. [2013]
Mohan, K., Pearl, J., and Tian, J. [2013].
Graphical models for inference with missing data.
In Advances in Neural Information Processing Systems,
volume 26, pp. 1277–1285.
-
Mole [2010]
Mole, C. [2010].
Attention Is Cognitive Unison: An Essay in Philosophical
Psychology.
Oxford University Press.
http://dx.doi.org/10.1093/acprof:oso/9780195384529.001.0001.
-
Moore [1959]
Moore, E. F. [1959].
The shortest path through a maze.
In International Symposium on the Theory of Switching, pp.
285–292. Harvard University Press.
-
Moore et al. [2020]
Moore, T. J., Heyward, J., Anderson, G., and Alexander, G. C. [2020].
Variation in the estimated costs of pivotal clinical benefit trials
supporting the US approval of new therapeutic agents,
2015–2017: A cross-sectional study.
BMJ Open, 10(6).
http://dx.doi.org/10.1136/bmjopen-2020-038863.
-
Morin and Bengio [2005]
Morin, F. and Bengio, Y. [2005].
Hierarchical probabilistic neural network language model.
In international Workshop on Artificial Intelligence and
Statistics, pp. 246–252,.
-
Motik et al. [2012]
Motik, B., Patel-Schneider, P. F., and Grau, B. C. (eds.) [2012].
OWL 2 Web Ontology Language: Direct Semantics.
W3C Recommendation 11 December 2012, 2nd edition.
http://www.w3.org/TR/owl2-direct-semantics/.
-
Munn [2022]
Munn, L. [2022].
The uselessness of AI ethics.
AI and Ethics.
https://doi.org/10.1007/s43681-022-00209-w.
-
Murphy [2022]
Murphy, K. P. [2022].
Probabilistic Machine Learning: An Introduction.
MIT Press.
https://probml.github.io/pml-book/book1.html.
-
Murphy [2023]
Murphy, K. P. [2023].
Probabilistic Machine Learning: Advanced Topics.
MIT Press.
http://probml.github.io/book2.
-
Muscettola et al. [1998]
Muscettola, N., Nayak, P., Pell, B., and Williams, B. [1998].
Remote agent: To boldly go where no AI system has gone before.
Artificial Intelligence, 103:5–47.
-
NASA [2022]
NASA [2022].
EarthData: Open access for open science.
https://www.earthdata.nasa.gov.
-
Nash [1950]
Nash, J. F. [1950].
Equilibrium points in N-person games.
National Academy of Sciences of the United States of America,
36:48–49.
-
Nau [2007]
Nau, D. S. [2007].
Current trends in automated planning.
AI Magazine, 28(4):43–58.
-
Neufeld et al. [2019]
Neufeld, X., Mostaghim, S., Sancho-Pradel, D. L., and Brand, S. [2019].
Building a planner: A survey of planning systems used in commercial
video games.
IEEE Transactions on Games, 11(2):91–108.
http://dx.doi.org/10.1109/TG.2017.2782846.
-
Neumann and Morgenstern [1953]
Neumann, J. V. and Morgenstern, O. [1953].
Theory of Games and Economic Behavior.
Princeton University Press, 3rd edition.
-
Neville and Jensen [2007]
Neville, J. and Jensen, D. [2007].
Relational dependency networks.
Journal of Machine Learning Research (JMLR), 8:653–692.
-
New York Times [1958]
New York Times [1958].
New Navy device learns by doing: Psychologist shows embryo of
computer designed to read and grow wiser.
https://timesmachine.nytimes.com/timesmachine/1958/07/08/83417341.html?pageNumber=25.
-
Newell and Simon [1956]
Newell, A. and Simon, H. A. [1956].
The logic theory machine: A complex information processing system.
Technical Report P-868, The Rand Corporation.
http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf.
-
Newell and Simon [1976]
Newell, A. and Simon, H. A. [1976].
Computer science as empirical enquiry: Symbols and search.
Communications of the ACM, 19:113–126.
-
Ng [2018]
Ng, A. [2018].
Machine Learning Yearning.
deeplearning.ai.
https://www.deeplearning.ai/resources/.
-
Ng [2004]
Ng, A. Y. [2004].
Feature selection, L1 vs. L2 regularization, and rotational
invariance.
In Twenty-First International Conference on Machine Learning.
-
Ng and Russell [2000]
Ng, A. Y. and Russell, S. J. [2000].
Algorithms for inverse reinforcement learning.
In International Conference on Machine Learning (ICML), pp.
663–670.
-
Niles and Pease [2001]
Niles, I. and Pease, A. [2001].
Towards a standard upper ontology.
In Welty, C. and Smith, B. (eds.), 2nd International Conference
on Formal Ontology in Information Systems (FOIS-2001).
-
Nilsson [2007]
Nilsson, N. J. [2007].
The physical symbol system hypothesis: Status and prospects.
In Lungarella, M. et al. (eds.), 50 Years of AI, Festschrift,
pp. 9–17. Springer.
http://ai.stanford.edu/˜nilsson/OnlinePubs-Nils/PublishedPapers/pssh.pdf.
-
Nilsson [2010]
Nilsson, N. J. [2010].
The Quest for Artificial Intelligence: A History of Ideas and
Achievements.
Cambridge University Press.
-
Nisan [2007]
Nisan, N. [2007].
Introduction to mechanisn design (for computer scientists).
In Nisan, N. et al. (eds.), Algorithmic Game Theory,
chapter 9, pp. 209–242. Cambridge University Press.
-
Noble [2018]
Noble, S. U. [2018].
Algorithms of Oppression: How Search Engines Reinforce Racism.
NYU Press.
-
Nocedal and Wright [2006]
Nocedal, J. and Wright, S. [2006].
Numerical Optimization.
Springer-Verlag.
-
Nyholm [2021]
Nyholm, S. [2021].
The ethics of human-robot interaction and traditional moral theories.
In The Oxford Handbook of Digital Ethics. Oxford University
Press.
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.3.
-
Obermeyer et al. [2019]
Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. [2019].
Dissecting racial bias in an algorithm used to manage the health of
populations.
Science, 366(6464):447–453.
-
OECD [2019]
OECD [2019].
OECD AI principles.
https://oecd.ai/en/ai-principles.
-
Office of Science and Technology Policy [2022]
Office of Science and Technology Policy [2022].
The blueprint for an AI bill of rights.
https://www.whitehouse.gov/ostp/ai-bill-of-rights/.
-
Olah [2015]
Olah, C. [2015].
Understanding LSTM networks.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
-
O’Neil [2016]
O’Neil, C. [2016].
Weapons of Math Destruction: How Big Data Increases Inequality
and Threatens Democracy.
Crown.
-
OpenAI [2022]
OpenAI [2022].
ChatGPT: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt/.
-
OpenAI [2023]
OpenAI [2023].
GPT-4 technical report.
ArXiv e-prints, arXiv:2303.08774.
-
Ordeshook [1986]
Ordeshook, P. C. [1986].
Game Theory and Political Theory: An Introduction.
Cambridge University Press.
-
Orkin [2006]
Orkin, J. [2006].
Three states and a plan: The AI of F.E.A.R.
In Game Developers Conference.
-
Ostrom [1990]
Ostrom, E. [1990].
Governing the Commons: The Evolution of Institutions for
Collective Action.
Cambridge University Press.
-
Page et al. [1999]
Page, L., Brin, S., Motwani, R., and Winograd, T. [1999].
The PageRank citation ranking: Bringing order to the Web.
Technical Report SIDL-WP-1999-0120, Stanford InfoLab.
-
Panton et al. [2006]
Panton, K., et al. [2006].
Common sense reasoning – from Cyc to intelligent assistant.
In Cai, Y. and Abascal, J. (eds.), Ambient Intelligence in
Everyday Life, pp. 1–31. Springer.
-
Pasula et al. [2003]
Pasula, H., et al. [2003].
Identity uncertainty and citation matching.
In Advances in Neural Information Processing Systems,
volume 15.
-
Pearl [1984]
Pearl, J. [1984].
Heuristics.
Addison-Wesley.
-
Pearl [1988]
Pearl, J. [1988].
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kaufmann.
-
Pearl [2009]
Pearl, J. [2009].
Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.
-
Pearl and Mackenzie [2018]
Pearl, J. and Mackenzie, D. [2018].
The Book of Why: The New Science of Cause and Effect.
Basic Books.
-
Pease [2011]
Pease, A. [2011].
Ontology: A Practical Guide.
Articulate Software Press.
-
Peden et al. [2004]
Peden, M. et al. (eds.) [2004].
World Report on Road Traffic Injury Prevention.
World Health Organization.
-
Pereira and Shieber [2002]
Pereira, F. C. N. and Shieber, S. M. [2002].
Prolog and Natural-Language Analysis.
Microtome Publishing.
-
Perrault et al. [2020]
Perrault, A., Fang, F., Sinha, A., and Tambe, M. [2020].
Artificial intelligence for social impact: Learning and planning in
the data-to-deployment pipeline.
AI Magazine, 41(4):3–16.
http://dx.doi.org/10.1609/aimag.v41i4.5296.
-
Peters et al. [2018]
Peters, M. E., et al. [2018].
Deep contextualized word representations.
In 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
http://dx.doi.org/10.18653/v1/N18-1202.
-
Phuong and Hutter [2022]
Phuong, M. and Hutter, M. [2022].
Formal algorithms for transformers.
http://dx.doi.org/10.48550/arXiv.2207.09238.
-
Piaget [1953]
Piaget, J. [1953].
The Origin of Intelligence in the Child.
Routledge & Kegan Paul.
-
Pinker [1997]
Pinker, S. [1997].
How the Mind Works.
Norton.
-
Pohl [1971]
Pohl, I. [1971].
Bi-directional search.
Machine Intelligence, 6(127–140).
-
Pollack [2005]
Pollack, M. E. [2005].
Intelligent technology for an aging population: The use of AI to
assist elders with cognitive impairment.
AI Magazine, 26(2):9–24.
-
Poole [1993]
Poole, D. [1993].
Probabilistic Horn abduction and Bayesian networks.
Artificial Intelligence, 64(1):81–129.
-
Poole [2007]
Poole, D. [2007].
Logical generative models for probabilistic reasoning about
existence, roles and identity.
In 22nd AAAI Conference on AI (AAAI-07).
http://cs.ubc.ca/˜poole/papers/AAAI07-Poole.pdf.
-
Poole et al. [1987]
Poole, D., Goebel, R., and Aleliunas, R. [1987].
Theorist: A logical reasoning system for defaults and diagnosis.
In Cercone, N. and McCalla, G. (eds.), The Knowledge Frontier:
Essays in the Representation of Knowledge, pp. 331–352. Springer-Verlag.
-
Posner [1989]
Posner, M. I. (ed.) [1989].
Foundations of Cognitive Science.
MIT Press.
-
Powell [2022]
Powell, W. B. [2022].
Reinforcement Learning and Stochastic Optimization: A Unified
Framework for Sequential Decisions.
Wiley.
https://castlelab.princeton.edu/RLSO/.
-
Prabhu and Birhane [2020]
Prabhu, V. U. and Birhane, A. [2020].
Large image datasets: A pyrrhic win for computer vision?
http://dx.doi.org/10.48550/arXiv.2006.16923.
-
Pujara et al. [2015]
Pujara, J., Miao, H., Getoor, L., and Cohen, W. W. [2015].
Using semantics and statistics to turn data into knowledge.
AI Magazine, 36(1):65–74.
http://dx.doi.org/10.1609/aimag.v36i1.2568.
-
Puterman [1994]
Puterman, M. [1994].
Markov Decision Processes: Discrete Stochastic Dynamic
Programming.
Wiley.
-
Qian et al. [2021]
Qian, K., et al. [2021].
XNLP: A living survey for XAI research in natural language
processing.
In 26th International Conference on Intelligent User
Interfaces, pp. 78–80.
http://dx.doi.org/10.1145/3397482.3450728.
-
Qiu et al. [2020]
Qiu, X., et al. [2020].
Pre-trained models for natural language processing: A survey.
CoRR, abs/2003.08271.
https://arxiv.org/abs/2003.08271.
-
Quinlan [1993]
Quinlan, J. R. [1993].
C4.5 Programs for Machine Learning.
Morgan Kaufmann.
-
Rabiner [1989]
Rabiner, L. [1989].
A tutorial on hidden Markov models and selected applications in
speech recognition.
IEEE, 77(2):257–286.
-
Rae et al. [2021]
Rae, J. W., et al. [2021].
Scaling language models: Methods, analysis & insights from
training gopher.
CoRR, abs/2112.11446.
https://arxiv.org/abs/2112.11446.
-
Rakova et al. [2021]
Rakova, B., Yang, J., Cramer, H., and Chowdhury, R. [2021].
Where responsible AI meets reality: Practitioner perspectives on
enablers for shifting organizational practices.
Proceedings of the ACM on Human-Computer Interaction, 5.
http://dx.doi.org/10.1145/3449081.
-
Randell [1982]
Randell, B. [1982].
From analytical engine to electronic digital computer: The
contributions of ludgate, torres, and bush.
Annals of the History of Computing, 4(4).
-
Real et al. [2020]
Real, E., Liang, C., So, D. R., and Le, Q. V. [2020].
AutoML-Zero: Evolving machine learning algorithms from scratch.
In 37th International Conference on Machine Learning.
http://dx.doi.org/10.48550/arXiv.2003.03384.
-
Richtel [2014]
Richtel, M. [2014].
A Deadly Wandering: A Mystery, a Landmark Investigation, and
the Astonishing Science of Attention in the Digital Age.
HarperCollins.
-
Roberts [1965]
Roberts, L. [1965].
Machine Perception of 3-D Solids.
MIT Press.
-
Robillard [2021]
Robillard, M. [2021].
The ethics of weaponized AI.
In The Oxford Handbook of Digital Ethics. Oxford University
Press.
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.29.
-
Robinson [1965]
Robinson, J. A. [1965].
A machine-oriented logic based on the resolution principle.
Journal ACM, 12(1):23–41.
-
Rockström et al. [2009]
Rockström, J., et al. [2009].
A safe operating space for humanity.
Nature, 461(7263):472–475.
-
Rogers et al. [2023]
Rogers, Y., Sharp, H., and Preece, J. [2023].
Interaction Design: Beyond Human-Computer Interaction.
Wiley, 6th edition.
-
Rosenblatt [1958]
Rosenblatt, F. [1958].
The perceptron: A probabilistic model for information storage and
organization in the brain.
Psychological Review, 65(6):386–408.
-
Rosenschein and Kaelbling [1995]
Rosenschein, S. J. and Kaelbling, L. P. [1995].
A situated view of representation and control.
Artificial Intelligence, 73:149–173.
-
Rossi et al. [2011]
Rossi, F., Venable, K. B., and Walsh, T. [2011].
A Short Introduction to Preferences: Between Artificial
Intelligence and Social Choice.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00372ED1V01Y201107AIM014.
-
Rubin [1976]
Rubin, D. B. [1976].
Inference and missing data.
Biometrika, 63(3):581–592.
-
Rubinstein [1981]
Rubinstein, R. Y. [1981].
Simulation and the Monte Carlo Method.
Wiley.
-
Ruder [2016]
Ruder, S. [2016].
An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747.
http://arxiv.org/abs/1609.04747.
-
Rudin et al. [2022]
Rudin, C., et al. [2022].
Interpretable machine learning: Fundamental principles and 10 grand
challenges.
Statistics Surveys, 16:1–85.
http://dx.doi.org/10.1214/21-SS133.
-
Rumelhart et al. [1986]
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. [1986].
Learning internal representations by error propagation.
In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel
Distributed Processing, chapter 8, pp. 318–362. MIT Press.
-
Russakovsky
et al. [2014]
Russakovsky, O., et al. [2014].
Imagenet large scale visual recognition challenge.
CoRR, abs/1409.0575.
http://arxiv.org/abs/1409.0575.
-
Russell [1997]
Russell, S. [1997].
Rationality and intelligence.
Artificial Intelligence, 94:57–77.
-
Russell [2019]
Russell, S. [2019].
Human Compatible: AI and the Problem of Control.
Penguin Books Limited.
-
Russell and Norvig [2020]
Russell, S. and Norvig, P. [2020].
Artificial Intelligence: A Modern Approach (4th Edition).
Pearson.
http://aima.cs.berkeley.edu/.
-
Russo et al. [2018]
Russo, D., et al. [2018].
A tutorial on Thompson sampling.
Foundations and Trends in Machine Learning,, 11(1):1–96.
http://dx.doi.org/10.48550/arXiv.1707.02038.
-
Sacerdoti [1975]
Sacerdoti, E. D. [1975].
The nonlinear nature of plans.
In 4th International Joint Conference on Artificial
Intelligence, pp. 206–214.
-
Salimans et al. [2017]
Salimans, T., et al. [2017].
Evolution strategies as a scalable alternative to reinforcement
learning.
http://dx.doi.org/10.48550/arXiv.1703.03864.
-
Samuel [1959]
Samuel, A. L. [1959].
Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, 3(3):210–229.
-
Sandholm [2007]
Sandholm, T. [2007].
Expressive commerce and its application to sourcing: How we conducted
$35 billion of generalized combinatorial auctions.
AI Magazine, 28(3):45–58.
-
Satterthwaite [1975]
Satterthwaite, M. [1975].
Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217.
-
Savage [1972]
Savage, L. J. [1972].
The Foundation of Statistics.
Dover, 2nd edition.
-
Schank [1990]
Schank, R. C. [1990].
What is AI, anyway?
In Partridge, D. and Wilks, Y. (eds.), The Foundations of
Artificial Intelligence, pp. 3–13. Cambridge University Press.
-
Schapire [2002]
Schapire, R. E. [2002].
The boosting approach to machine learning: An overview.
In MSRI Workshop on Nonlinear Estimation and Classification.
Springer-Verlag.
-
Schlichtkrull et al. [2018]
Schlichtkrull, M., et al. [2018].
Modeling relational data with graph convolutional networks.
In European Semantic Web Conference (ESWC 2018), pp. 593–607.
Springer.
https://arxiv.org/abs/1703.06103.
-
Schmidhuber [1990]
Schmidhuber, J. [1990].
Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and
planning in non-stationary environments.
Technical Report FKI-126-90, T.U. Munich.
-
Schmidhuber [2015]
Schmidhuber, J. [2015].
Deep learning in neural networks: An overview.
Neural Networks, 61:85–117.
http://dx.doi.org/10.1016/j.neunet.2014.09.003.
-
Schubert [2022]
Schubert, E. [2022].
Stop using the elbow criterion for k-means and how to choose the
number of clusters instead.
http://dx.doi.org/10.48550/arXiv.2212.12189.
-
Schwarz [1978]
Schwarz, G. [1978].
Estimating the dimension of a model.
Annals of Statistics, 6(2):461–464.
https://projecteuclid.org/euclid.aos/1176344136.
-
Seger [2021]
Seger, C.-J. H. [2021].
Formal verification of complex data paths: An industrial experience.
In FM.
-
Selinger and Leong [2021]
Selinger, E. and Leong, B. [2021].
The ethics of facial recognition technology.
In The Oxford Handbook of Digital Ethics. Oxford University
Press.
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.32.
-
Senior et al. [2020]
Senior, A. W., et al. [2020].
Improved protein structure prediction using potentials from deep
learning.
Nature, 577(7792):706–710.
http://dx.doi.org/10.1038/s41586-019-1923-7.
-
Settles [2012]
Settles, B. [2012].
Active Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00429ED1V01Y201207AIM018.
-
Shachter and Peot [1992]
Shachter, R. and Peot, M. A. [1992].
Decision making using probabilistic inference methods.
In Eighth Conference on Uncertainty in Artificial Intelligence
(UAI-92), pp. 276–283.
-
Shahriari et al. [2016]
Shahriari, B., et al. [2016].
Taking the human out of the loop: A review of Bayesian
optimization.
IEEE, 104(1):148–175.
http://dx.doi.org/10.1109/JPROC.2015.2494218.
-
Shanahan [2022]
Shanahan, M. [2022].
Talking about large language models.
http://dx.doi.org/10.48550/arXiv.2212.03551.
-
Shannon and Weaver [1949]
Shannon, C. E. and Weaver, W. [1949].
The Mathematical Theory of Communication.
University of Illinois Press.
-
Sharkey [2008]
Sharkey, N. [2008].
The ethical frontiers of robotics.
Science, 322(5909):1800–1801.
DOI:10.1126/science.1164582.
-
Shavlik and Dietterich [1990]
Shavlik, J. W. and Dietterich, T. G. (eds.) [1990].
Readings in Machine Learning.
Morgan Kaufmann.
-
Shelley [1818]
Shelley, M. W. [1818].
Frankenstein; or, The Modern Prometheus.
Lackington, Hughes, Harding, Mavor & Jones.
-
Shneiderman [2022]
Shneiderman, B. [2022].
Human-Centered AI.
Oxford University Press.
-
Shoeybi et al. [2019]
Shoeybi, M., et al. [2019].
Megatron-LM: Training multi-billion parameter language models using
model parallelism.
CoRR, abs/1909.08053.
http://arxiv.org/abs/1909.08053.
-
Shoham [2016]
Shoham, Y. [2016].
Why knowledge representation matters.
Communications of the ACM, 59(1):47–49.
-
Shoham and Leyton-Brown [2008]
Shoham, Y. and Leyton-Brown, K. [2008].
Multiagent Systems: Algorithmic, Game Theoretic, and Logical
Foundations.
Cambridge University Press.
-
Shpitser and Pearl [2008]
Shpitser, I. and Pearl, J. [2008].
Complete identification methods for the causal hierarchy.
Journal of Machine Learning Research, 9:1941–1979.
-
Sikos et al. [2021]
Sikos, L., Seneviratne, O., and McGuinness, D. L. [2021].
Provenance in Data Science: From Data Models to Context-Aware
Knowledge Graphs.
Springer.
https://www.springer.com/gp/book/9783030676803.
-
Silver et al. [2021]
Silver, D., Singh, S., Precup, D., and Sutton, R. S. [2021].
Reward is enough.
Artificial Intelligence, 299.
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103535.
-
Silver et al. [2016]
Silver, D., et al. [2016].
Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489.
-
Silver et al. [2017]
Silver, D., et al. [2017].
Mastering chess and shogi by self-play with a general reinforcement
learning algorithm.
CoRR, abs/1712.01815.
http://arxiv.org/abs/1712.01815.
-
Simon [1971]
Simon, H. A. [1971].
Designing organizations for an information rich world.
In Greenberger, M. (ed.), Computers, Communications, and the
Public Interest, pp. 37–72. Johns Hopkins Press.
-
Simon [1995]
Simon, H. A. [1995].
Artificial intelligence: An empirical science.
Artificial Intelligence, 77(1):95–127.
-
Simon [1996]
Simon, H. A. [1996].
The Sciences of the Artificial.
MIT Press, 3rd edition.
-
Singer [2009a]
Singer, P. W. [2009a].
Robots at war: The new battlefield.
The Wilson Quarterly.
-
Singer [2009b]
Singer, P. W. [2009b].
Wired for War: The Robotics Revolution and Conflict in the 21st
Century.
Penguin.
-
Sinz et al. [2003]
Sinz, C., Kaiser, A., and Küchlin, W. [2003].
Formal methods for the validation of automotive product configuration
data.
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 17:75 – 97.
-
Siu et al. [2021]
Siu, H. C., et al. [2021].
Evaluation of human-AI teams for learned and rule-based agents in
Hanabi.
In Neural Information Processing Systems (NeurIPS).
http://dx.doi.org/10.48550/arXiv.2107.07630.
-
Smith [2003]
Smith, B. [2003].
Ontology.
In Floridi, L. (ed.), Blackwell Guide to the Philosophy of
Computing and Information, pp. 155–166. Blackwell.
http://ontology.buffalo.edu/smith/articles/ontologies.htm.
-
Smith [2015]
Smith, B. [2015].
Basic formal ontology 2.0: Specification and user’s guide.
Technical report, Institute for Formal Ontology and Medical
Information Science (IFOMIS).
https://github.com/bfo-ontology/BFO/wiki.
-
Smith [1996]
Smith, B. C. [1996].
On the Origin of Objects.
MIT Press.
-
Sohl-Dickstein et al. [2015]
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. [2015].
Deep unsupervised learning using nonequilibrium thermodynamics.
In 32nd International Conference on Machine Learning, pp.
2256–2265.
https://proceedings.mlr.press/v37/sohl-dickstein15.html.
-
Sowa [2000]
Sowa, J. F. [2000].
Knowledge Representation: Logical, Philosophical, and
Computational Foundations.
Brooks Cole.
-
Sowa [2011]
Sowa, J. F. [2011].
Future directions for semantic systems.
In Tolk, A. and Jain, L. C. (eds.), Intelligence-Based Software
Engineering, pp. 23–47. Springer-Verlag.
http://www.jfsowa.com/pubs/futures.pdf.
-
Spall [2003]
Spall, J. C. [2003].
Introduction to Stochastic Search and Optimization: Estimation,
Simulation.
Wiley.
-
Sparkes et al. [2010]
Sparkes, A., et al. [2010].
Towards robot scientists for autonomous scientific discovery.
Automated Experimentation, 2(1):1.
http://dx.doi.org/10.1186/1759-4499-2-1.
-
Spencer et al. [2022]
Spencer, A., et al. [2022].
The QALY at 50: One story many voices.
Social Science and Medicine, 296:114653.
http://dx.doi.org/https://doi.org/10.1016/j.socscimed.2021.114653.
-
Spiegelhalter et al. [1990]
Spiegelhalter, D. J., Franklin, R. C. G., and Bull, K. [1990].
Assessment, criticism and improvement of imprecise subjective
probabilities for a medical expert system.
In Henrion, M., Shachter, R. D., Kanal, L., and Lemmer, J. (eds.),
Uncertainty in Artificial Intelligence 5, pp. 285–294. North-Holland.
-
Spirtes et al. [2001]
Spirtes, P., Glymour, C., and Scheines, R. [2001].
Causation, Prediction, and Search.
MIT Press, 2nd edition.
-
Springer Nature [2022]
Springer Nature [2022].
SN SciGraph: A linked open data platform for the scholarly domain.
https://www.springernature.com/gp/researchers/scigraph.
-
Sreedharan et al. [2022]
Sreedharan, S., Kulkarni, A., and Kambhampati, S. [2022].
Explainable Human–AI Interaction: A Planning Perspective.
Morgan & Claypool.
https://doi.org/10.2200/S01152ED1V01Y202111AIM050.
-
Srivastava et al. [2022]
Srivastava, A. et al. [2022].
Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models.
http://dx.doi.org/10.48550/arXiv.2206.04615.
-
Stanley et al. [2019]
Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. [2019].
Designing neural networks through neuroevolution.
Nature Machine Intelligence, 1(1):24–35.
http://dx.doi.org/10.1038/s42256-018-0006-z.
-
Steck
et al. [2021]
Steck, H., et al. [2021].
Deep learning for recommender systems: A netflix case study.
AI Magazine, 42(3):7–18.
http://dx.doi.org/10.1609/aimag.v42i3.18140.
-
Sterling and Shapiro [1994]
Sterling, L. S. and Shapiro, E. Y. [1994].
The Art of Prolog: Advanced Programming Techniques.
MIT Press, 2nd edition.
-
Stevenson and Lindberg [2010]
Stevenson, A. and Lindberg, C. A. (eds.) [2010].
The New Oxford American Dictionary.
Oxford University Press.
-
Stillings et al. [1987]
Stillings, N. A., et al. [1987].
Cognitive Science: An Introduction.
MIT Press.
-
Stodden et al. [2016]
Stodden, V., et al. [2016].
Enhancing reproducibility for computational methods.
Science, 354.
http://dx.doi.org/10.1126/science.aah6168.
-
Stone [2007]
Stone, P. [2007].
Learning and multiagent reasoning for autonomous agents.
In The 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), pp. 13–30.
http://www.cs.utexas.edu/˜pstone/Papers/bib2html-links/IJCAI07-award.pdf.
-
Stone and Veloso [2000]
Stone, P. and Veloso, M. [2000].
Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8:345–383.
-
Such et al. [2017]
Such, F. P., et al. [2017].
Deep neuroevolution: Genetic algorithms are a competitive alternative
for training deep neural networks for reinforcement learning.
CoRR, abs/1712.06567.
http://arxiv.org/abs/1712.06567.
-
Suchanek et al. [2007]
Suchanek, F. M., Kasneci, G., and Weikum, G. [2007].
YAGO: A core of semantic knowledge – unifying WordNet and
Wikipedia.
In 16th International World Wide Web Conference (WWW 2007).
-
Sundermann et al. [2021]
Sundermann, C., et al. [2021].
Applications of #SAT solvers on feature models.
15th International Working Conference on Variability Modelling
of Software-Intensive Systems.
-
Sunstein [2018]
Sunstein, C. R. [2018].
#Republic: Divided Democracy in the Age of Social Media.
Princeton University Press.
http://www.jstor.org/stable/j.ctv8xnhtd.
-
Sutton [1988]
Sutton, R. S. [1988].
Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44.
http://dx.doi.org/10.1007/BF00115009.
-
Sutton and Barto [2018]
Sutton, R. S. and Barto, A. G. [2018].
Reinforcement Learning: An Introduction.
MIT Press, 2nd edition.
-
Szepesvári [2010]
Szepesvári, C. [2010].
Algorithms for Reinforcement Learning.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00268ED1V01Y201005AIM009.
-
Tarski [1956]
Tarski, A. [1956].
Logic, Semantics, Metamathematics.
Clarendon Press.
Papers from 1923 to 1938 collected and translated by J. H. Woodger.
-
Tate [1977]
Tate, A. [1977].
Generating project networks.
In 5th International Joint Conference on Artificial
Intelligence, pp. 888–893.
-
Tay et al. [2022]
Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. [2022].
Efficient transformers: A survey.
ACM Computing Surveys.
http://dx.doi.org/10.1145/3530811.
-
Thompson [1933]
Thompson, W. [1933].
On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples”.
Biometrika, 25(3/4):285–294.
-
Thrun [2006]
Thrun, S. [2006].
Winning the DARPA grand challenge.
In Innovative Applications of Artificial Intelligence
Conference (IAAI-06), pp. 16–20.
-
Thrun et al. [2005]
Thrun, S., Burgard, W., and Fox, D. [2005].
Probabilistic Robotics.
MIT Press.
-
Torrance [1970]
Torrance, G. [1970].
A generalized cost-effectiveness model for the evaluation of health
programs.
Technical report, Faculty of Business, McMaster University.
http://hdl.handle.net/11375/5559.
-
Trouillon et al. [2016]
Trouillon, T., et al. [2016].
Complex embeddings for simple link prediction.
In ICML, volume abs/1606.06357.
http://arxiv.org/abs/1606.06357.
-
Turing [1950]
Turing, A. [1950].
Computing machinery and intelligence.
Mind, 59:433–460.
https://doi.org/10.1093/mind/LIX.236.433.
-
Tversky and Kahneman [1974]
Tversky, A. and Kahneman, D. [1974].
Judgment under uncertainty: Heuristics and biases.
Science, 185:1124–1131.
-
UNESCO [2022]
UNESCO [2022].
Recommendation on the ethics of artificial intelligence.
https://unesdoc.unesco.org/ark:/48223/pf0000381137.
-
United Nations [2015a]
United Nations [2015a].
Transforming our world: The UN 2030 agenda for sustainable
development.
https://sdgs.un.org/2030agenda.
-
United Nations [2015b]
United Nations [2015b].
The UN sustainable development goals.
https://sdgs.un.org/goals.
-
U.S. Government [2022]
U.S. Government [2022].
GPS accuracy.
https://www.gps.gov/systems/gps/performance/accuracy/.
-
Vallor [2021]
Vallor, S. [2021].
Virtues in the digital age.
In The Oxford Handbook of Digital Ethics. Oxford University
Press.
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.2.
-
van Beek and Chen [1999]
van Beek, P. and Chen, X. [1999].
Cplan: A constraint programming approach to planning.
In AAAI-99, pp. 585–590.
-
van de Meent et al. [2018]
van de Meent, J.-W., Paige, B., Yang, H., and Wood, F. [2018].
An introduction to probabilistic programming.
https://arxiv.org/abs/1809.10756.
-
Van den Broeck et al. [2021]
Van den Broeck, G., Kersting, K., Natarajan, S., and Poole, D. (eds.) [2021].
Introduction to Lifted Inference.
MIT Press.
-
van Diggelen and Enge [2015]
van Diggelen, F. and Enge, P. [2015].
The world’s first GPS MOOC and worldwide laboratory using
smartphones.
In 28th International Technical Meeting of the Satellite
Division of The Institute of Navigation.
-
van Emden and Kowalski [1976]
van Emden, M. H. and Kowalski, R. A. [1976].
The semantics of predicate logic as a programming language.
Journal ACM, 23(4):733–742.
-
Vaswani et al. [2017]
Vaswani, A., et al. [2017].
Attention is all you need.
In 31st Conference on Neural Information Processing Systems.
https://arxiv.org/abs/1706.03762.
-
Veitch and D’Amour [2023]
Veitch, V. and D’Amour, A. [2023].
Causality.
In Murphy [2023], chapter 36. MIT Press.
-
Visser and Burkhard [2007]
Visser, U. and Burkhard, H.-D. [2007].
Robocup: 10 years of achievements and challenges.
AI Magazine, 28(2):115–130.
-
Viswanathan et al. [2011]
Viswanathan, P., Little, J., Mackworth, A. K., and Mihailidis, A. [2011].
Navigation and obstacle avoidance help (NOAH) for older adults with
cognitive impairment: A pilot study.
In International ACM SIGACCESS Conference on Computers and
Accessibility.
-
Vlassis [2007]
Vlassis, N. [2007].
A Concise Introduction to Multiagent Systems and Distributed
Artificial Intelligence.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00091ED1V01Y200705AIM002.
-
Vrandečić and Krötzsch [2014]
Vrandečić, D. and Krötzsch, M. [2014].
Wikidata: A free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85.
-
W3C OWL Working Group [2012]
W3C OWL Working Group (ed.) [2012].
OWL 2 Web Ontology Language Document Overview.
W3C Recommendation 11 December 2012, 2nd edition.
http://www.w3.org/TR/owl2-overview/.
-
Wakker [2010]
Wakker, P. P. [2010].
Prospect Theory: For Risk and Ambiguity.
Cambridge University Press.
-
Waldinger [1977]
Waldinger, R. [1977].
Achieving several goals simultaneously.
In Elcock, E. and Michie, D. (eds.), Machine Intelligence 8:
Machine Representations of Knowledge, pp. 94–136. Ellis Horwood.
-
Walsh [2007]
Walsh, T. [2007].
Representing and reasoning with preferences.
AI Magazine, 28(4):59–69.
-
Walter [1950]
Walter, W. G. [1950].
An imitation of life.
Scientific American, 182(5):42–45.
-
Walter [1951]
Walter, W. G. [1951].
A machine that learns.
Scientific American, 185(2):60–63.
-
Wang [1960]
Wang, H. [1960].
Toward mechanical mathematics.
IBM Journal of Research and Development, 4(1):2–22.
http://dx.doi.org/doi:10.1147/rd.41.0002.
-
Warren and Pereira [1982]
Warren, D. H. D. and Pereira, F. C. N. [1982].
An efficient easily adaptable system for interpreting natural
language queries.
Computational Linguistics, 8(3–4):110–122.
http://portal.acm.org/citation.cfm?id=972944.
-
Watkins and Dayan [1992]
Watkins, C. J. C. H. and Dayan, P. [1992].
Q-learning.
Machine Learning, 8(3):279–292.
http://dx.doi.org/10.1007/BF00992698.
-
Weidinger et al. [2021]
Weidinger, L., et al. [2021].
Ethical and social risks of harm from language models.
http://dx.doi.org/10.48550/arXiv.2112.04359.
-
Weizenbaum [1976]
Weizenbaum, J. [1976].
Computer Power and Human Reason: From Judgment to Calculation.
Freeman.
-
Weld [1994]
Weld, D. S. [1994].
An introduction to least commitment planning.
AI Magazine, 15(4):27–61.
-
Weld [1999]
Weld, D. S. [1999].
Recent advances in AI planning.
AI Magazine, 20(2).
-
Wellman [2011]
Wellman, M. P. [2011].
Trading Agents.
Morgan & Claypool.
http://dx.doi.org/doi:10.2200/S00370ED1V01Y201107AIM012.
-
Whitehead and Russell [1925, 1927]
Whitehead, A. N. and Russell, B. [1925, 1927].
Principia Mathematica.
Cambridge University Press, 2nd edition.
-
Wikidata [2021]
Wikidata [2021].
Q262802 – wikidata.
https://www.wikidata.org/wiki/Q262802.
-
Wilkins [1988]
Wilkins, D. E. [1988].
Practical Planning: Extending the Classical AI Planning
Paradigm.
Morgan Kaufmann.
-
Wilkinson et al. [2016]
Wilkinson, M. D., et al. [2016].
The fair guiding principles for scientific data management and
stewardship.
Scientific Data, 3(1):160018.
http://dx.doi.org/10.1038/sdata.2016.18.
-
Winograd [1972]
Winograd, T. [1972].
Understanding Natural Language.
Academic Press.
-
Winograd [1990]
Winograd, T. [1990].
Thinking machines: Can there be? Are we?
In Partridge, D. and Wilks, Y. (eds.), The Foundations of
Artificial Intelligence: A Sourcebook, pp. 167–189. Cambridge University
Press.
-
Wolpert [1996]
Wolpert, D. H. [1996].
The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341–1390.
http://dx.doi.org/10.1162/neco.1996.8.7.1341.
-
Woods [2007]
Woods, W. A. [2007].
Meaning and links.
AI Magazine, 28(4):71–92.
-
Wooldridge [2009]
Wooldridge, M. [2009].
An Introduction to MultiAgent Systems.
Wiley.
-
World Economic Forum [2021]
World Economic Forum [2021].
Responsible use of technology: The IBM case study.
https://www.weforum.org/whitepapers/responsible-use-of-technology-the-ibm-case-study/.
-
Xu et al. [2019]
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. [2019].
How powerful are graph neural networks?
In ICLR.
-
Xu et al. [2008]
Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. [2008].
SATzilla: Portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research, 32:565–606.
https://www.aaai.org/Papers/JAIR/Vol32/JAIR-3214.pdf.
-
Yang [1997]
Yang, Q. [1997].
Intelligent Planning: A Decomposition and Abstraction-Based
Approach.
Springer-Verlag.
-
Yang and Mackworth [2007]
Yang, S. and Mackworth, A. K. [2007].
Hierarchical shortest pathfinding applied to route-planning for
wheelchair users.
In Canadian Conference on Artificial Intelligence, AI-2007.
-
Yannakakis and Togelius [2018]
Yannakakis, G. N. and Togelius, J. [2018].
Artificial Intelligence and Games.
Springer.
http://gameaibook.org.
-
Zador et al. [2023]
Zador, A., et al. [2023].
Catalyzing next-generation artificial intelligence through NeuroAI.
Nature Communications, 14(1):1597.
http://dx.doi.org/10.1038/s41467-023-37180-x.
-
Zhang et al. [2018]
Zhang, B. H., Lemoine, B., and Mitchell, M. [2018].
Mitigating unwanted biases with adversarial learning.
In 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp.
335–340.
http://dx.doi.org/10.1145/3278721.3278779.
-
Zhang et al. [2022a]
Zhang, D., et al. [2022a].
The AI Index 2022 Annual Report.
AI Index Steering Committee, Stanford Institute for Human-Centered
AI, Stanford University.
https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report˙Master.pdf.
-
Zhang et al. [2022b]
Zhang, H., et al. [2022b].
On the paradox of learning to reason from data.
http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf.
-
Zhang [2004]
Zhang, N. L. [2004].
Hierarchical latent class models for cluster analysis.
Journal of Machine Learning Research, 5(6):697–723.
-
Zhang and Poole [1994]
Zhang, N. L. and Poole, D. [1994].
A simple approach to Bayesian network computations.
In 10th Canadian Conference on Artificial Intelligence, pp.
171–178.
-
Zhang and Mackworth [1995]
Zhang, Y. and Mackworth, A. K. [1995].
Constraint nets: A semantic model for hybrid dynamic systems.
Theoretical Computer Science, 138:211–239.
-
Zilberstein [1996]
Zilberstein, S. [1996].
Using anytime algorithms in intelligent systems.
AI Magazine, 17(3):73–83.
-
Zimmer [2022]
Zimmer, M. [2022].
A celebrated AI has learned a new trick: How to do chemistry.
The Conversation.
https://theconversation.com/a-celebrated-ai-has-learned-a-new-trick-how-to-do-chemistry-182031.
-
Zuboff [2019]
Zuboff, S. [2019].
The Age of Surveillance Capitalism : The Fight for a Human
Future at the New Frontier of Power.
Profile Books.