References

  • AAAI [2019] AAAI [2019]. AAAI code of professional ethics and conduct. https://www.aaai.org/Conferences/code-of-ethics-and-conduct.php.
  • Abelson and DiSessa [1981] Abelson, H. and DiSessa, A. [1981]. Turtle Geometry: The Computer as a Medium for Exploring Mathematics. MIT Press.
  • Acemoglu et al. [2021] Acemoglu, D., Ozdaglar, A., and Siderius, J. [2021]. A model of online misinformation. Working Paper 28884, National Bureau of Economic Research. http://dx.doi.org/10.3386/w28884.
  • ACM Committee on Professional Ethics [2018] ACM Committee on Professional Ethics [2018]. ACM code of ethics and professional conduct. https://ethics.acm.org.
  • Agrawal et al. [2019] Agrawal, A., Gans, J., and Goldfarb, A. [2019]. The Economics of Artificial Intelligence: An Agenda. National Bureau of Economic Research Conference Report. University of Chicago Press.
  • Agrawal et al. [2022] Agrawal, A., Gans, J., and Goldfarb, A. [2022]. Prediction Machines, Updated and Expanded: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
  • Agre [1995] Agre, P. E. [1995]. Computational research on interaction and agency. Artificial Intelligence, 72:1–52.
  • Ajunwa [2020] Ajunwa, I. [2020]. The paradox of automation as anti-bias intervention. Cardozo, L. Rev., 167.
  • Alammar [2018] Alammar, J. [2018]. The illustrated transformer. https://jalammar.github.io/illustrated-transformer/.
  • Albus [1981] Albus, J. S. [1981]. Brains, Behavior and Robotics. BYTE Publications.
  • Algorithm Watch [2022] Algorithm Watch [2022]. A guide to the AI act. https://algorithmwatch.org/en/ai-act-explained/.
  • Allais and Hagen [1979] Allais, M. and Hagen, O. (eds.) [1979]. Expected Utility Hypothesis and the Allais Paradox. Reidel.
  • Allemang et al. [2020] Allemang, D., Hendler, J., and Gandon, F. [2020]. Semantic Web for the Working Ontologist: Effective Modeling for Linked Data, RDFS and OWL. ACM Books, 3rd edition.
  • Amershi et al. [2019] Amershi, S., et al. [2019]. Guidelines for human–AI interaction. In CHI 2019. ACM. https://www.microsoft.com/en-us/research/publication/guidelines-for-human-ai-interaction/. CHI 2019 Honorable Mention Award.
  • Amodei et al. [2016] Amodei, D., et al. [2016]. Concrete Problems in AI Safety. ArXiv e-prints, arXiv:1606.06565.
  • Andreae [1963] Andreae, J. H. [1963]. STELLA: A scheme for a learning machine. In 2nd IFAC Congress, pp. 497–502.
  • Andrieu et al. [2003] Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. [2003]. An introduction to MCMC for machine learning. Machine Learning, 50(1–2):5–43.
  • Antoniou and van Harmelen [2008] Antoniou, G. and van Harmelen, F. [2008]. A Semantic Web Primer. MIT Press, 2nd edition.
  • Apt and Bol [1994] Apt, K. and Bol, R. [1994]. Logic programming and negation: A survey. Journal of Logic Programming, 19/20:9–71.
  • Archer [2022] Archer, S. [2022]. Salience: A Philosophical Inquiry. Routledge.
  • Aristotle [350 BCE] Aristotle [350 BCE]. Categories. Translated by E. M. Edghill. http://classics.mit.edu/Aristotle/categories.html.
  • Arp et al. [2015] Arp, R., Smith, B., and Spear, A. [2015]. Building Ontologies with Basic Formal Ontology. MIT Press.
  • Arrow [1963] Arrow, K. [1963]. Social Choice and Individual Values. Wiley, 2nd edition.
  • Asimov [1950] Asimov, I. [1950]. I, Robot. Doubleday.
  • Auer et al. [2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. [2002]. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2):235–256. http://dx.doi.org/10.1023/A:1013689704352.
  • Auer et al. [2007] Auer, S., et al. [2007]. DBpedia: A nucleus for a web of open data. In 6th International Semantic Web Conference (ISWC).
  • Awad et al. [2018] Awad, E., et al. [2018]. The moral machine experiment. Nature, 563(7729):59–64. http://dx.doi.org/10.1038/s41586-018-0637-6.
  • Awad et al. [2020] Awad, E., et al. [2020]. Crowdsourcing moral machines. Communications of the ACM, 63(3):Pages 48–55.
  • Baader et al. [2007] Baader, F., et al. (eds.) [2007]. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2nd edition. http://dx.doi.org/10.1017/CBO9780511711787.
  • Bacchus and Grove [1995] Bacchus, F. and Grove, A. [1995]. Graphical models for preference and utility. In Uncertainty in Artificial Intelligence (UAI-95), pp. 3–10.
  • Bacchus and Kabanza [1996] Bacchus, F. and Kabanza, F. [1996]. Using temporal logic to control search in a forward chaining planner. In Ghallab, M. and Milani, A. (eds.), New Directions in AI Planning, pp. 141–153. ISO Press.
  • Bach et al. [2017] Bach, S. H., Broecheler, M., Huang, B., and Getoor, L. [2017]. Hinge-loss Markov random fields and probabilistic soft logic. Journal of Machine Learning Research (JMLR), 18:1–67.
  • Bäck [1996] Bäck, T. [1996]. Evolutionary Algorithms in Theory and Practice. Oxford University Press.
  • Baek et al. [2021] Baek, M., et al. [2021]. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557):871–876. http://dx.doi.org/10.1126/science.abj8754.
  • Bahdanau et al. [2015] Bahdanau, D., Cho, K., and Bengio, Y. [2015]. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Represenations (ICLR). http://dx.doi.org/10.48550/arXiv.1409.0473.
  • Bakhtin et al. [2022] Bakhtin, A., et al. [2022]. Human-level play in the game of Diplomacy by combining language models with strategic reasoning. Science, 378(6624):1067–1074. http://dx.doi.org/10.1126/science.ade9097.
  • Bakker et al. [2020] Bakker, K., et al. [2020]. Digital technologies and dynamic resource management. 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 368–373.
  • Ballard [1983] Ballard, B. W. [1983]. The -minimax search procedure for trees containing chance nodes. Artificial Intelligence, 21(3):327–350.
  • Bansal et al. [2021] Bansal, G., et al. [2021]. Does the whole exceed its parts? The effect of AI explanations on complementary team performance. In 2021 CHI Conference on Human Factors in Computing Systems. http://dx.doi.org/10.1145/3411764.3445717.
  • Bartlett [1932] Bartlett, F. C. [1932]. Remembering: A Study in Experimental and Social Psychology. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511759185.
  • Baum [2004] Baum, E. B. [2004]. What is Thought? MIT Press.
  • Bayes [1763] Bayes, T. [1763]. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370–418. https://doi.org/10.1098/rstl.1763.0053.
  • Bell and Koren [2007] Bell, R. M. and Koren, Y. [2007]. Lessons from the netflix prize challenge. SIGKDD Explor. Newsl., 9(2):75–79. http://dx.doi.org/10.1145/1345448.1345465.
  • Bellman [1957] Bellman, R. [1957]. Dynamic Programming. Princeton University Press.
  • Bender et al. [2021] Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. [2021]. On the dangers of stochastic parrots: Can language models be too big? In 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623. http://dx.doi.org/10.1145/3442188.3445922.
  • Bender and Koller [2020] Bender, E. M. and Koller, A. [2020]. Climbing towards NLU: On meaning, form, and understanding in the age of data. In 58th Annual Meeting of the Association for Computational Linguistics, pp. 5185–5198. http://dx.doi.org/10.18653/v1/2020.acl-main.463.
  • Bengio et al. [2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. [2003]. A neural probabilistic language model. J. Mach. Learn. Res. (JMLR), 3:1137–1155.
  • Benjamin [2019] Benjamin, R. [2019]. Race After Technology : Abolitionist Tools for the New Jim Code. Polity.
  • Bent and Van Hentenryck [2004] Bent, R. and Van Hentenryck, P. [2004]. A two-stage hybrid local search for the vehicle routing problem with time windows. Transportation Science, 38(4):515–530.
  • Berners-Lee et al. [2001] Berners-Lee, T., Hendler, J., and Lassila, O. [2001]. The semantic web: A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American, May:28–37.
  • Bertelè and Brioschi [1972] Bertelè, U. and Brioschi, F. [1972]. Nonserial Dynamic Programming. Academic Press.
  • Bertsekas [2017] Bertsekas, D. P. [2017]. Dynamic Programming and Optimal Control. Athena Scientific, 4th edition.
  • Besnard and Hunter [2008] Besnard, P. and Hunter, A. [2008]. Elements of Argumentation. MIT Press.
  • Bickel et al. [1975] Bickel, P. J., Hammel, E. A., and O’Connell, J. W. [1975]. Sex bias in graduate admissions: Data from Berkeley. Science, 187(4175):398–404.
  • Biere et al. [2021] Biere, A., Heule, M., van Maaren, H., and Walsh, T. (eds.) [2021]. Handbook of Satisfiability. IOS Press, 2nd edition.
  • Bishop [2008] Bishop, C. M. [2008]. Pattern Recognition and Machine Learning. Springer-Verlag.
  • Bisk et al. [2020] Bisk, Y., et al. [2020]. Experience grounds language. CoRR, abs/2004.10151. https://arxiv.org/abs/2004.10151.
  • Blei et al. [2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. [2003]. Latent Dirichlet allocation. Journal of Machine Learning Research (JMLR), 3:993–1022.
  • Bleichrodt et al. [2008] Bleichrodt, H., Rohde, K. I., and Wakker, P. P. [2008]. Koopmans’ constant discounting for intertemporal choice: A simplification and a generalization. Journal of Mathematical Psychology, 52(6):341–347. http://dx.doi.org/https://doi.org/10.1016/j.jmp.2008.05.003.
  • Blodgett et al. [2020] Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, H. [2020]. Language (technology) is power: A critical survey of “bias” in NLP. In 58th Annual Meeting of the Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/2020.acl-main.485.
  • Blum and Furst [1997] Blum, A. and Furst, M. [1997]. Fast planning through planning graph analysis. Artificial Intelligence, 90:281–300.
  • Bobrow [1967] Bobrow, D. G. [1967]. Natural language input for a computer problem solving system. In Minsky, M. (ed.), Semantic Information Processing, pp. 133–215. MIT Press.
  • Bobrow [1993] Bobrow, D. G. [1993]. Artificial intelligence in perspective: a retrospective on fifty volumes of Artificial Intelligence. Artificial Intelligence, 59:5–20.
  • Boddy and Dean [1994] Boddy, M. and Dean, T. L. [1994]. Deliberation scheduling for problem solving in time-constrained environments. Artificial Intelligence, 67(2):245–285.
  • Bodlaender [1993] Bodlaender, H. L. [1993]. A tourist guide through treewidth. Acta Cybernetica, 11(1–2):1–21.
  • Bommasani et al. [2021] Bommasani, R. et al. [2021]. On the opportunities and risks of foundation models. CoRR, abs/2108.07258. https://arxiv.org/abs/2108.07258.
  • Bonnefon [2021] Bonnefon, J.-F. [2021]. The Car That Knew Too Much Can a Machine Be Moral? MIT Press.
  • Bostrom [2014] Bostrom, N. [2014]. Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
  • Boutilier et al. [1999] Boutilier, C., Dean, T., and Hanks, S. [1999]. Decision-theoretic planning: Structual assumptions and computational leverage. Journal of Artificial Intelligence Research, 11:1–94.
  • Boutilier et al. [2004] Boutilier, C., et al. [2004]. CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21:135–191.
  • Brachman and Levesque [1985] Brachman, R. J. and Levesque, H. J. (eds.) [1985]. Readings in Knowledge Representation. Morgan Kaufmann.
  • Brachman and Levesque [2004] Brachman, R. J. and Levesque, H. J. [2004]. Knowledge Representation and Reasoning. Morgan Kaufmann.
  • Brachman and Levesque [2022a] Brachman, R. J. and Levesque, H. J. [2022a]. Machines like Us: Toward AI with Common Sense. MIT Press.
  • Brachman and Levesque [2022b] Brachman, R. J. and Levesque, H. J. [2022b]. Toward a new science of common sense. In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22).
  • Breiman [2001] Breiman, L. [2001]. Random forests. Machine Learning, 45(1):5–32.
  • Breiman et al. [1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. [1984]. Classification and Regression Trees. Wadsworth & Brooks.
  • Brémaud [1999] Brémaud, P. [1999]. Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues. Springer.
  • Brin and Page [1998] Brin, S. and Page, L. [1998]. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7):107–117. http://www.sciencedirect.com/science/article/pii/S016975529800110X.
  • Brooks [1986] Brooks, R. A. [1986]. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1):14–23.
  • Brooks [1990] Brooks, R. A. [1990]. Elephants don’t play chess. Robotics and Autonomous Systems, 6:3–15.
  • Brooks [1991] Brooks, R. A. [1991]. Intelligence without representation. Artificial Intelligence, 47:139–159.
  • Brooks [2018] Brooks, R. A. [2018]. My dated predictions. https://rodneybrooks.com/my-dated-predictions/.
  • Broussard [2018] Broussard, M. [2018]. Artificial Unintelligence: How Computers Misunderstand the World. MIT Press. http://dx.doi.org/10.7551/mitpress/11022.001.0001.
  • Brown and Sandholm [2019] Brown, N. and Sandholm, T. [2019]. Superhuman AI for multiplayer poker. Science, 365(6456):885–890. http://dx.doi.org/10.1126/science.aay2400.
  • Brown et al. [2020] Brown, T., et al. [2020]. Language models are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. https://arxiv.org/abs/2005.14165.
  • Brundtland et al. [1987] Brundtland, G. H. et al. [1987]. Our Common Future. United Nations, Report of the World Commission on Environment and Development. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf.
  • Bryce and Kambhampati [2007] Bryce, D. and Kambhampati, S. [2007]. A tutorial on planning graph-based reachability heuristics. AI Magazine, 28(1):47–83.
  • Brynjolfsson and McAfee [2014] Brynjolfsson, E. and McAfee, A. [2014]. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Co.
  • Bryson [2011] Bryson, J. J. [2011]. AI robots should not be considered moral agents. In Berlatsky, N. (ed.), Artificial Intelligence, Opposing Viewpoints, pp. 155–168. Greenhaven Press.
  • Bryson [2018] Bryson, J. J. [2018]. Patiency is not a virtue: the design of intelligent systems and systems of ethics. Ethics and Information Technology, 20(1):15–26. http://dx.doi.org/10.1007/s10676-018-9448-6.
  • Buchanan [2005] Buchanan, B. G. [2005]. A (very) brief history of artificial intelligence. AI Magazine, 26(4):53–60.
  • Buchanan and Feigenbaum [1978] Buchanan, B. G. and Feigenbaum, E. A. [1978]. Dendral and Meta-Dendral: Their applications dimension. Artificial Intelligence, 11:5–24.
  • Buchanan and Shortliffe [1984] Buchanan, B. G. and Shortliffe, E. (eds.) [1984]. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley.
  • Buntine [1992] Buntine, W. [1992]. Learning classification trees. Statistics and Computing, 2:63–73.
  • Buntine [1994] Buntine, W. L. [1994]. Operations for learning with graphical models. Journal of Artificial Intelligence Research, 2:159–225.
  • Buolamwini and Gebru [2018] Buolamwini, J. and Gebru, T. [2018]. Gender shades: Intersectional accuracy disparities in commercial gender classification. In 1st Conference on Fairness, Accountability and Transparency. https://proceedings.mlr.press/v81/buolamwini18a.html.
  • Burch [2022] Burch, R. [2022]. Charles Sanders Peirce. The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/archives/sum2022/entries/peirce/.
  • Busoniu et al. [2008] Busoniu, L., Babuska, R., and Schutter, B. D. [2008]. A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2):156–172.
  • Calo [2014] Calo, R. [2014]. The case for a federal robotics commission. Brookings Institution Center for Technology Innovation.
  • Calo et al. [2016] Calo, R., Froomkin, A. M., and Kerr, I. [2016]. Robot Law. Edward Elgar.
  • Campbell et al. [2002] Campbell, M., Hoane Jr., A. J., and Hse, F.-h. [2002]. Deep Blue. Artificial Intelligence, 134(1–2):57–83.
  • Caswell and Liang [2020] Caswell, I. and Liang, B. [2020]. Recent advances in Google translate. https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html.
  • Cauchy [1847] Cauchy, A. [1847]. Méthode générale pour la résolution des systèmes d’équations simultanées. C. R. Acad. Sci. Paris, 25:536–538.
  • Center for AI and Digital Policy [2023] Center for AI and Digital Policy [2023]. Artificial intelligence and democratic values. https://www.caidp.org/reports/aidv-2021/.
  • Chapman [1987] Chapman, D. [1987]. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377.
  • Charlton [1998] Charlton, J. I. [1998]. Nothing About Us Without Us: Disability Oppression and Empowerment. University of California Press, 1st edition. http://www.jstor.org/stable/10.1525/j.ctt1pnqn9.
  • Chaudhri et al. [2022] Chaudhri, V. K., et al. [2022]. Knowledge graphs: Introduction, history and, perspectives. AI Magazine, 43(1):17–29.
  • Cheeseman et al. [1988] Cheeseman, P., et al. [1988]. Autoclass: A Bayesian classification system. In Fifth International Conference on Machine Learning, pp. 54–64. Reprinted in Shavlik and Dietterich [1990].
  • Chen et al. [2017] Chen, J., Holte, R. C., Zilles, S., and Sturtevant, N. R. [2017]. Front-to-end bidirectional heuristic search with near-optimal node expansions. In IJCAI-2017.
  • Chen and Guestrin [2016] Chen, T. and Guestrin, C. [2016]. Xgboost: A scalable tree boosting system. In KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. https://doi.org/10.1145/2939672.2939785.
  • Cheng and Druzdzel [2000] Cheng, J. and Druzdzel, M. [2000]. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 13:155–188. http://www.jair.org/papers/paper764.html.
  • Chesnevar et al. [2000] Chesnevar, C., Maguitman, A., and Loui, R. [2000]. Logical models of argument. ACM Computer Surveys, 32(4):337–383.
  • Choi et al. [2020] Choi, Y., Vergari, A., and Van den Broeck, G. [2020]. Probabilistic circuits: A unifying framework for tractable probabilistic models. Technical report, UCLA StarAI Lab. http://starai.cs.ucla.edu/papers/ProbCirc20.pdf.
  • Chollet [2021] Chollet, F. [2021]. Deeep Learning with Python. Manning.
  • Chomsky [1957] Chomsky, N. [1957]. Syntactic Structures. Mouton & Co.
  • Chowdhery et al. [2022] Chowdhery, A., et al. [2022]. PaLM: Scaling language modeling with pathways. http://dx.doi.org/10.48550/arXiv.2204.02311.
  • Chrisley and Begeer [2000] Chrisley, R. and Begeer, S. [2000]. Artificial intelligence: Critical Concepts in Cognitive Science. Routledge.
  • Christian [2020] Christian, B. [2020]. The Alignment Problem: Machine Learning and Human Values. W. W. Norton & Co.
  • Clark [1978] Clark, K. L. [1978]. Negation as failure. In Gallaire, H. and Minker, J. (eds.), Logic and Databases, pp. 293–322. Plenum Press.
  • Cohen [2005] Cohen, P. R. [2005]. If not Turing’s test, then what? AI Magazine, 26(4):61–67.
  • Colledanchise and Ögren [2018] Colledanchise, M. and Ögren, P. [2018]. Behavior Trees in Robotics and AI: An Introduction. CRC Press.
  • Colmerauer et al. [1973] Colmerauer, A., Kanoui, H., Roussel, P., and Pasero, R. [1973]. Un système de communication homme-machine en français. Technical report, Groupe de Researche en Intelligence Artificielle, Université d’Aix-Marseille.
  • Colmerauer and Roussel [1996] Colmerauer, A. and Roussel, P. [1996]. The birth of Prolog. In Bergin, T. J. and Gibson, R. G. (eds.), History of Programming Languages–II, pp. 331–367. ACM Press/Addison-Wesley.
  • Conati et al. [2002] Conati, C., Gertner, A. S., and VanLehn, K. [2002]. Using Bayesian networks to manage uncertainty in student modeling. User Modeling and User-Adapted Interaction, 12(4):371–417. http://dx.doi.org/10.1023/A:1021258506583.
  • Confucius [500 BCE] Confucius [500 BCE]. Confucian Analects. translated by James Legge [1893]. https://www.sacred-texts.com/cfu/conf1.htm.
  • Cormen et al. [2022] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. [2022]. Introduction to Algorithms. MIT Press, 4th edition.
  • Cover and Thomas [2006] Cover, T. M. and Thomas, J. A. [2006]. Elements of Information Theory. Wiley, 2nd edition.
  • Cramer [2002] Cramer, J. [2002]. The origins of logistic regression. Working Paper 2002-119/4, Tinbergen Institute. http://dx.doi.org/10.2139/ssrn.360300.
  • Crawford [2021] Crawford, K. [2021]. The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.
  • Culberson and Schaeffer [1998] Culberson, J. and Schaeffer, J. [1998]. Pattern databases. Computational Intelligence, 14(3):318–334.
  • Dadich [2016] Dadich, S. [2016]. Barack Obama, neural nets, self-driving cars, and the future of the world. Wired.
  • Dahl [1994] Dahl, V. [1994]. Natural language processing and logic programming. Journal of Logic Programming, 19/20:681–714.
  • Danaher [2021] Danaher, J. [2021]. Automation and the future of work. In The Oxford Handbook of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.37.
  • Darwiche [2001] Darwiche, A. [2001]. Recursive conditioning. Artificial Intelligence, 126(1-2):5–41.
  • Darwiche [2009] Darwiche, A. [2009]. Modeling and Reasoning with Bayesian Networks. Cambridge University Press.
  • Darwiche [2018] Darwiche, A. [2018]. Human-level intelligence or animal-like abilities? Communication of the ACM, 61(10):56–67. http://dx.doi.org/10.1145/3271625.
  • Davis [1990] Davis, E. [1990]. Representations of Commonsense Knowledge. Morgan Kaufmann.
  • Davis [2015] Davis, E. [2015]. A collection of Winograd schemas. http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html.
  • Davis and Goadrich [2006] Davis, J. and Goadrich, M. [2006]. The relationship between precision-recall and ROC curves. In 23rd International Conference on Machine Learning (ICML), pp. 233–240.
  • Davis et al. [1962] Davis, M., Logemann, G., and Loveland, D. [1962]. A machine program for theorem proving. Communications of the ACM, 5(7):394–397.
  • Davis and Putnam [1960] Davis, M. and Putnam, H. [1960]. A computing procedure for quantification theory. Journal of the ACM, 7(3):201–215.
  • De Jong [2006] De Jong, K. A. [2006]. Evolutionary Computation: A Unified Approach. MIT Press.
  • de Kleer [1986] de Kleer, J. [1986]. An assumption-based TMS. Artificial Intelligence, 28(2):127–162.
  • de Kleer et al. [1992] de Kleer, J., Mackworth, A. K., and Reiter, R. [1992]. Characterizing diagnoses and systems. Artificial Intelligence, 56:197–222.
  • De Raedt et al. [2008] De Raedt, L., Frasconi, P., Kersting, K., and Muggleton, S. H. (eds.) [2008]. Probabilistic Inductive Logic Programming. Springer.
  • De Raedt et al. [2016] De Raedt, L., Kersting, K., Natarajan, S., and Poole, D. [2016]. Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan & Claypool. http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032.
  • De Raedt et al. [2007] De Raedt, L., Kimmig, A., and Toivonen, H. [2007]. ProbLog: A probabilistic Prolog and its application in link discovery. In 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2462–2467.
  • Dean and Kanazawa [1989] Dean, T. and Kanazawa, K. [1989]. A model for reasoning about persistence and causation. Computational Intelligence, 5(3):142–150.
  • Dean and Wellman [1991] Dean, T. L. and Wellman, M. P. [1991]. Planning and Control. Morgan Kaufmann.
  • Dechter [1996] Dechter, R. [1996]. Bucket elimination: A unifying framework for probabilistic inference. In Twelfth Conference on Uncertainty in Artificial Intelligence (UAI-96), pp. 211–219.
  • Dechter [2003] Dechter, R. [2003]. Constraint Processing. Morgan Kaufmann.
  • Dechter [2019] Dechter, R. [2019]. Reasoning with Probabilistic and Deterministic Graphical Models. Morgan & Claypool, 2nd edition.
  • Dechter and Pearl [1985] Dechter, R. and Pearl, J. [1985]. Generalized best-first search strategies and the optimality of A*. Journal of the Association for Computing Machinery, 32(3):505–536.
  • Dellaert et al. [1999] Dellaert, F., Fox, D., Burgard, W., and Thrun, S. [1999]. Monte Carlo localization for mobile robots. In IEEE International Conference on Robotics and Automation (ICRA).
  • Delling et al. [2015] Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. F. [2015]. Customizable route planning in road networks. Transportation Science, 51(2):566–591. https://doi.org/10.1287/trsc.2014.0579.
  • Dempster et al. [1977] Dempster, A., Laird, N., and Rubin, D. [1977]. Maximum liklihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38. With discussion.
  • Deng et al. [2009] Deng, J., et al. [2009]. ImageNet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition Conference (CVPR).
  • Denil et al. [2014] Denil, M., Matheson, D., and de Freitas, N. [2014]. Narrowing the gap: Random forests in theory and in practice. In International Conference on Machine Learning (ICML).
  • Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. [2019]. BERT: Pre-training of deep bidirectional transformers for language understanding. In 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. http://dx.doi.org/10.18653/v1/N19-1423.
  • Dietterich [2000a] Dietterich, T. G. [2000a]. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–158.
  • Dietterich [2000b] Dietterich, T. G. [2000b]. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13:227–303.
  • Dietterich [2002] Dietterich, T. G. [2002]. Ensemble learning. In Arbib, M. (ed.), The Handbook of Brain Theory and Neural Networks, pp. 405–408. MIT Press, 2nd edition.
  • Dijkstra [1959] Dijkstra, E. W. [1959]. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271. https://doi.org/10.1007/BF01386390.
  • Dijkstra [1976] Dijkstra, E. W. [1976]. A Discipline of Programming. Prentice-Hall.
  • Dolgov et al. [2010] Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. [2010]. Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research, 29(5):485–501. http://dx.doi.org/10.1177/0278364909359210.
  • Domingos and Lowd [2009] Domingos, P. and Lowd, D. [2009]. Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00206ED1V01Y200907AIM007.
  • Doucet et al. [2001] Doucet, A., de Freitas, N., and Gordon, N. (eds.) [2001]. Sequential Monte Carlo in Practice. Springer-Verlag.
  • Doyle [1979] Doyle, J. [1979]. A truth maintenance system. AI Memo 521, MIT AI Laboratory.
  • Dresner and Stone [2008] Dresner, K. and Stone, P. [2008]. A multiagent approach to autonomous intersection management. Journal of Artificial Intelligence Research, 31:591–656.
  • du Boulay et al. [2023] du Boulay, B., Mitrovic, T., and Yacef, K. (eds.) [2023]. Handbook of Artificial Intelligence in Education. Edward Elgar.
  • Dua and Graff [2017] Dua, D. and Graff, C. [2017]. UCI machine learning repository. http://archive.ics.uci.edu/ml.
  • Duda et al. [2001] Duda, R. O., Hart, P. E., and Stork, D. G. [2001]. Pattern Classification. Wiley-Interscience, 2nd edition.
  • Dung [1995] Dung, P. [1995]. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357.
  • Dzeroski et al. [2001] Dzeroski, S., De Raedt, L., and Driessens, K. [2001]. Relational reinforcement learning. Machine Learning,, 43:7–52.
  • Einstein [1934] Einstein, A. [1934]. On the method of theoretical physics. Philosophy of Science, 1(2):163–169.
  • Eubanks [2018] Eubanks, V. [2018]. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Publishing Group.
  • European Commission [2021] European Commission [2021]. The general data protection regulation. https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu˙en.
  • European Commission [2022a] European Commission [2022a]. AI liability directive. https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739342/EPRS˙BRI(2023)739342˙EN.pdf.
  • European Commission [2022b] European Commission [2022b]. The artificial intelligence act. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.
  • European Commission [2022c] European Commission [2022c]. The digital services act package. https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package.
  • European Commission [2022d] European Commission [2022d]. New liability rules on products and AI to protect consumers. https://ec.europa.eu/commission/presscorner/detail/en/ip˙22˙5807.
  • Falco et al. [2021] Falco, G., et al. [2021]. Governing AI safety through independent audits. Nature Machine Intelligence, 3(7):566–571. http://dx.doi.org/10.1038/s42256-021-00370-7.
  • Fanshel and Bush [1970] Fanshel, S. and Bush, J. [1970]. Health-status index and its application to health-services outcomes. Operations Research, 18.
  • Fatemi et al. [2020] Fatemi, B., Taslakian, P., Vazquez, D., and Poole, D. [2020]. Knowledge hypergraphs: Prediction beyond binary relations. In 29th International Joint Conference on Artificial Intelligence (IJCAI).
  • Fedus et al. [2021] Fedus, W., Zoph, B., and Shazeer, N. [2021]. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. http://dx.doi.org/10.48550/arXiv.2101.03961.
  • Fellegi and Sunter [1969] Fellegi, I. and Sunter, A. [1969]. A theory for record linkage. Journal of the American Statistical Association, 64(328):1183–1280.
  • Felner et al. [2004] Felner, A., Korf, R. E., and Hanan, S. [2004]. Additive pattern database heuristics. Journal of Artificial Intelligence Research, 22:279–318.
  • Feurer and Hutter [2019] Feurer, M. and Hutter, F. [2019]. Hyperparameter optimization. In Automated Machine Learning. Springer. http://dx.doi.org/https://doi.org/10.1007/978-3-030-05318-5˙1.
  • Fikes and Nilsson [1971] Fikes, R. E. and Nilsson, N. J. [1971]. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–208.
  • Foot [1967] Foot, P. [1967]. The problem of abortion and the doctrine of the double effect. Oxford Review, 5:5–15. https://philpapers.org/archive/FOOTPO-2.pdf.
  • Forbus [2019] Forbus, K. [2019]. Qualitative Representations: How People Reason and Learn about the Continuous World. MIT Press.
  • Forbus and Hinrich [2017] Forbus, K. D. and Hinrich, T. [2017]. Analogy and relational representations in the companion cognitive architecture. AI Magazine, 38(4):34–42. http://dx.doi.org/10.1609/aimag.v38i4.2743.
  • Ford [2021] Ford, M. [2021]. Rule of the Robots: How Artificial Intelligence Will Transform Everything. John Murray Press.
  • François-Lavet et al. [2018] François-Lavet, V., et al. [2018]. An introduction to deep reinforcement learning. CoRR, abs/1811.12560. http://arxiv.org/abs/1811.12560.
  • Freuder and Mackworth [2006] Freuder, E. C. and Mackworth, A. K. [2006]. Constraint satisfaction: An emerging paradigm. In Rossi, F., Van Beek, P., and Walsh, T. (eds.), Handbook of Constraint Programming, pp. 13–28. Elsevier.
  • Friedman [2001] Friedman, J. H. [2001]. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189–1232. http://www.jstor.org/stable/2699986.
  • Friedman et al. [1997] Friedman, N., Greiger, D., and Goldszmidt, M. [1997]. Bayesian network classifiers. Machine Learning, 29:103–130.
  • Gabrilovich et al. [2014] Gabrilovich, E., et al. [2014]. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
  • Gal and Grosz [2022] Gal, K. and Grosz, B. J. [2022]. Multi-agent systems: Technical & ethical challenges of functioning in a mixed group. Daedalus.
  • Galton [1886] Galton, F. [1886]. Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15:246–263. http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf.
  • Gangemi et al. [2003] Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. [2003]. Sweetening WordNet with DOLCE. AI Magazine, 24(3):13–24.
  • Garcia-Molina et al. [2009] Garcia-Molina, H., Ullman, J. D., and Widom, J. [2009]. Database Systems: The Complete Book. Prentice Hall, 2nd edition.
  • Gardner [1985] Gardner, H. [1985]. The Mind’s New Science. Basic Books.
  • Gebru et al. [2021] Gebru, T., et al. [2021]. Datasheets for datasets. Communication of the ACM, 64(12):86–92. http://dx.doi.org/10.1145/3458723.
  • Geffner and Bonet [2013] Geffner, H. and Bonet, B. [2013]. A Concise Introduction to Models and Methods for Automated Planning. Springer. http://dx.doi.org/doi:10.2200/S00513ED1V01Y201306AIM022.
  • Geffner et al. [2022] Geffner, H., Dechter, R., and Halpern, J. Y. (eds.) [2022]. Probabilistic and Causal Inference: The Works of Judea Pearl. ACM Books.
  • Gelman et al. [2013] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. [2013]. Bayesian Data Analysis. Chapman & Hall/CRC, 3rd edition. http://www.stat.columbia.edu/˜gelman/book/.
  • Gelman et al. [2020] Gelman, A., Hill, J., and Vehtari, A. [2020]. Regression and Other Stories. Cambridge University Press.
  • Genesereth and Thielscher [2014] Genesereth, M. and Thielscher, M. [2014]. General Game Playing. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00564ED1V01Y201311AIM024.
  • Gers et al. [2000] Gers, F. A., Schmidhuber, J., and Cummins, F. [2000]. Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10):2451–2471. http://dx.doi.org/https://doi.org/10.1162/089976600300015015.
  • Getoor and Taskar [2007] Getoor, L. and Taskar, B. (eds.) [2007]. Introduction to Statistical Relational Learning. MIT Press.
  • Ghahramani [2015] Ghahramani, Z. [2015]. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–459. http://dx.doi.org/10.1038/nature14541.
  • Ghallab et al. [2004] Ghallab, M., Nau, D., and Traverso, P. [2004]. Automated Planning: Theory and Practice. Elsevier.
  • Gibbard [1973] Gibbard, A. [1973]. Manipulation of voting schemes: A general result. Econometrica, 41:587–601.
  • Gil et al. [2017] Gil, Y., et al. [2017]. Towards continuous scientific data analysis and hypothesis evolution. In Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). http://www.isi.edu/˜gil/papers/gil-etal-aaai17.pdf.
  • Gil et al. [2019] Gil, Y., et al. [2019]. Intelligent systems for geosciences: An essential research agenda. Communications of the ACM, 62. http://dx.doi.org/10.1145/3192335.
  • Glorot and Bengio [2010] Glorot, X. and Bengio, Y. [2010]. Understanding the difficulty of training deep feedforward neural networks. In Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. https://proceedings.mlr.press/v9/glorot10a.html.
  • Glorot et al. [2011] Glorot, X., Bordes, A., and Bengio, Y. [2011]. Deep sparse rectifier neural networks. In 14th International Conference on Artificial Intelligence and Statistics, pp. 315–323.
  • Goble et al. [2020] Goble, C., et al. [2020]. FAIR Computational Workflows. Data Intelligence, 2(1-2):108–121. http://dx.doi.org/10.1162/dint˙a˙00033.
  • Goldberg [2002] Goldberg, D. E. [2002]. The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Addison-Wesley.
  • Goldberg [2016] Goldberg, Y. [2016]. A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57:345–420. http://dx.doi.org/doi:10.1613/jair.4992.
  • Gomes et al. [2019] Gomes, C., et al. [2019]. Computational sustainability: Computing for a better world and a sustainable future. Communication of the ACM, 62(9):56–65. http://dx.doi.org/10.1145/3339399.
  • Good [1965] Good, I. J. [1965]. Speculations concerning the first ultraintelligent machine. In Alt, F. and Ruminoff, M. (eds.), Advances in Computers, volume 6. Academic Press.
  • Goodfellow et al. [2016] Goodfellow, I., Bengio, Y., and Courville, A. [2016]. Deep Learning. MIT Press. http://www.deeplearningbook.org.
  • Goodfellow et al. [2014] Goodfellow, I. J., et al. [2014]. Generative adversarial networks. In Advances in Neural Information Processing Systems 27 (NIPS 2014). http://dx.doi.org/10.48550/arXiv.1406.2661.
  • Gordon et al. [2021] Gordon, M. L., et al. [2021]. The disagreement deconvolution: Bringing machine learning performance metrics in line with reality. In 2021 CHI Conference on Human Factors in Computing Systems. http://dx.doi.org/10.1145/3411764.3445423.
  • Green [2022] Green, B. [2022]. The flaws of policies requiring human oversight of government algorithms. Computer Law and Security Review, 45:105681. http://dx.doi.org/https://doi.org/10.1016/j.clsr.2022.105681.
  • Green [1969] Green, C. [1969]. Application of theorem proving to problem solving. In 1st International Joint Conference on Artificial Intelligence, pp. 219–237.
  • Grosz [2012] Grosz, B. [2012]. What question would Turing pose today? AI Magazine, 33(4):73. http://dx.doi.org/10.1609/aimag.v33i4.2441.
  • Grosz [2018] Grosz, B. J. [2018]. Smart enough to talk with us? Foundations and challenges for dialogue capable AI systems. Computational Linguistics, 44(1):1–15. http://dx.doi.org/10.1162/COLI˙a˙00313.
  • Grünwald [2007] Grünwald, P. D. [2007]. The Minimum Description Length Principle. MIT Press.
  • Gunkel [2018] Gunkel, D. [2018]. Robot Rights. MIT Press.
  • Halevy et al. [2009] Halevy, A., Norvig, P., and Pereira, F. [2009]. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2):8–12.
  • Halpern [2003] Halpern, J. Y. [2003]. Reasoning about Uncertainty. MIT Press.
  • Hamilton [2020] Hamilton, W. L. [2020]. Graph Representation Learning. Morgan & Claypool.
  • Hardin [1968] Hardin, G. [1968]. The tragedy of the commons: The population problem has no technical solution; it requires a fundamental extension in morality. Science, 162(3859):1243–1248.
  • Harper and Konstan [2015] Harper, F. M. and Konstan, J. A. [2015]. The MovieLens datasets: History and context. ACM Transactions on Interactive Intelligent Systems, 5(4). http://dx.doi.org/10.1145/2827872.
  • Hart et al. [1968] Hart, P. E., Nilsson, N. J., and Raphael, B. [1968]. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107.
  • Hart and Edwards [1961] Hart, T. P. and Edwards, D. J. [1961]. The tree prune (TP) algorithm. Memo 30, MIT Artificial Intelligence Project.
  • Haslum et al. [2019] Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. [2019]. An Introduction to the Planning Domain Definition Language. Morgan & Claypool. https://doi.org/10.2200/S00900ED2V01Y201902AIM042.
  • Hastie et al. [2009] Hastie, T., Tibshirani, R., and Friedman, J. [2009]. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2nd edition.
  • Haugeland [1985] Haugeland, J. [1985]. Artificial Intelligence: The Very Idea. MIT Press.
  • Haugeland [1997] Haugeland, J. (ed.) [1997]. Mind Design II: Philosophy, Psychology, Artificial Intelligence. MIT Press, revised and enlarged edition.
  • Hayes [1973] Hayes, P. J. [1973]. Computation and deduction. In 2nd Symposium on Mathematical Foundations of Computer Science, pp. 105–118. Czechoslovak Academy of Sciences.
  • He et al. [2015] He, K., Zhang, X., Ren, S., and Sun, J. [2015]. Deep residual learning for image recognition. CoRR, abs/1512.03385. http://arxiv.org/abs/1512.03385.
  • Heath and Bizer [2011] Heath, T. and Bizer, C. [2011]. Linked Data: Evolving the Web into a Global Data Space. Springer.
  • Heckerman [1999] Heckerman, D. [1999]. A tutorial on learning with Bayesian networks. In Jordan, M. (ed.), Learning in Graphical Models. MIT Press.
  • Hendler et al. [2002] Hendler, J., Berners-Lee, T., and Miller, E. [2002]. Integrating applications on the semantic web. Journal of the Institute of Electrical Engineers of Japan, 122(10):676–680. http://www.w3.org/2002/07/swint.
  • Henrion [1988] Henrion, M. [1988]. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Lemmer, J. F. and Kanal, L. N. (eds.), Uncertainty in Artificial Intelligence 2, pp. 149–163. Elsevier Science.
  • Hewitt [1969] Hewitt, C. [1969]. Planner: A language for proving theorems in robots. In 1st International Joint Conference on Artificial Intelligence, pp. 295–301.
  • Hinton et al. [2012a] Hinton, G., et al. [2012a]. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97. http://dx.doi.org/10.1109/MSP.2012.2205597.
  • Hinton et al. [2012b] Hinton, G. E., et al. [2012b]. Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580. http://arxiv.org/abs/1207.0580.
  • Hitchcock [1927] Hitchcock, F. L. [1927]. The expression of a tensor or a polyadic as a sum of products. Studies in Applied Mathematics, 6(1–4):164–189.
  • Hitzler et al. [2012] Hitzler, P., et al. (eds.) [2012]. OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation 11 December 2012. http://www.w3.org/TR/owl2-primer/.
  • Ho et al. [2020] Ho, J., Jain, A., and Abbeel, P. [2020]. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems, volume 33, pp. 6840–6851. https://proceedings.neurips.cc/paper˙files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
  • Hochreiter and Schmidhuber [1997] Hochreiter, S. and Schmidhuber, J. [1997]. Long short-term memory. Neural Computation, 9:1735–1780.
  • Hoffart et al. [2013] Hoffart, J., Suchanek, F., Berberich, K., and Weikum, G. [2013]. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence, 194:28–61.
  • Hofstadter [2022] Hofstadter, D. [2022]. Artificial neural networks today are not conscious, according to Douglas Hofstadter. The Economist, June 11th 2022.
  • Hogan et al. [2021] Hogan, A. et al. [2021]. Knowledge graphs. ACM Computing Surveys, 54(4). https://doi.org/10.1145/3447772.
  • Holland [1975] Holland, J. H. [1975]. Adaption in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press.
  • Holling [1973] Holling, C. S. [1973]. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23. http://dx.doi.org/10.1146/annurev.es.04.110173.000245.
  • Hoos and Stützle [2004] Hoos, H. H. and Stützle, T. [2004]. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann.
  • Horvitz [1989] Horvitz, E. J. [1989]. Reasoning about beliefs and actions under computational resource constraints. In Kanal, L., Levitt, T., and Lemmer, J. (eds.), Uncertainty in Artificial Intelligence 3, pp. 301–324. Elsevier.
  • Horvitz [2006] Horvitz, E. J. [2006]. Eric Horvitz forecasts the future. New Scientist, 2578:72.
  • Howard and Matheson [1984] Howard, R. A. and Matheson, J. E. [1984]. Influence diagrams. In Howard, R. A. and Matheson, J. E. (eds.), The Principles and Applications of Decision Analysis. Strategic Decisions Group.
  • Howson and Urbach [2006] Howson, C. and Urbach, P. [2006]. Scientific Reasoning: The Bayesian Approach. Open Court, 3rd edition.
  • Huang and Valtorta [2006] Huang, Y. and Valtorta, M. [2006]. Pearl’s calculus of intervention is complete. In Conference on Uncertainty in Artificial Intelligence, pp. 217–224.
  • Hume [1739–40] Hume, D. [1739–40]. A Treatise of Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning into Moral Subjects. https://gutenberg.org/files/4705/4705-h/4705-h.htm.
  • Hursthouse and Pettigrove [2018] Hursthouse, R. and Pettigrove, G. [2018]. Virtue ethics. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy. Winter 2018 edition. https://plato.stanford.edu/archives/win2018/entries/ethics-virtue/.
  • Hutter et al. [2019] Hutter, F., Kotthoff, L., and Vanschoren, J. (eds.) [2019]. Automated Machine Learning Methods, Systems, Challenges. Springer.
  • IEEE [2020] IEEE [2020]. IEEE code of ethics. https://www.ieee.org/about/corporate/governance/p7-8.html.
  • IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [2019] IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [2019]. Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html.
  • IHTSDO [2016] IHTSDO [2016]. SNOMED CT Starter Guide. International Health Terminology Standards Development Organisation. http://snomed.org.
  • Jackson [2011] Jackson, M. O. [2011]. A Brief Introduction to the Basics of Game Theory. SSRN. http://dx.doi.org/10.2139/ssrn.1968579.
  • Jacobs and Wallach [2021] Jacobs, A. Z. and Wallach, H. [2021]. Measurement and fairness. In 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 375–385. http://dx.doi.org/10.1145/3442188.3445901.
  • Jahrer et al. [2010] Jahrer, M., Töscher, A., and Legenstein, R. [2010]. Combining predictions for accurate recommender systems. In 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 693–702. http://dx.doi.org/10.1145/1835804.1835893.
  • Jannach and Bauer [2020] Jannach, D. and Bauer, C. [2020]. Escaping the McNamara fallacy: Towards more impactful recommender systems research. AI Magazine, 41(4):79–95. http://dx.doi.org/10.1609/aimag.v41i4.5312.
  • Jannach et al. [2021] Jannach, D., Pu, P., Ricci, F., and Zanker, M. [2021]. Recommender systems: Past, present, future. AI Magazine, 42(3):3–6. http://dx.doi.org/10.1609/aimag.v42i3.18139.
  • Janowicz et al. [2015] Janowicz, K., van Harmelen, F., Hendler, J. A., and Hitzler, P. [2015]. Why the data train needs semantic rails. AI Magazine, 36(1):5–14.
  • Jarrett et al. [2009] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. [2009]. What is the best multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on Computer Vision. http://dx.doi.org/10.1109/ICCV.2009.5459469.
  • Jaynes [2003] Jaynes, E. T. [2003]. Probability Theory: The Logic of Science. Cambridge University Press. https://bayes.wustl.edu/etj/prob/book.pdf.
  • Jordan [2019] Jordan, M. I. [2019]. Artificial intelligence – the revolution hasn’t happened yet. Harvard Data Science Review, 1(1). https://hdsr.mitpress.mit.edu/pub/wot7mkc1.
  • Joy [2000] Joy, B. [2000]. Why the future doesn’t need us. Wired. http://www.wired.com/wired/archive/8.04/joy.html.
  • Jozefowicz et al. [2015] Jozefowicz, R., Zaremba, W., and Sutskever, I. [2015]. An empirical exploration of recurrent network architectures. In 32nd International Conference on Machine Learning, ICML’15, pp. 2342–2350.
  • Jumper et al. [2021] Jumper, J., et al. [2021]. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–589. http://dx.doi.org/10.1038/s41586-021-03819-2.
  • Jurafsky and Martin [2023] Jurafsky, D. and Martin, J. H. [2023]. Speech and Language Processing. Unpublished, 3rd edition. https://web.stanford.edu/˜jurafsky/slp3/.
  • Kahneman [2011] Kahneman, D. [2011]. Thinking, Fast and Slow. Allen Lane.
  • Kakas and Denecker [2002] Kakas, A. and Denecker, M. [2002]. Abduction in logic programming. In Kakas, A. and Sadri, F. (eds.), Computational Logic: Logic Programming and Beyond, pp. 402–436. Springer-Verlag.
  • Kambhampati et al. [1995] Kambhampati, S., Knoblock, C. A., and Yang, Q. [1995]. Planning as refinement search: A unified framework for evaluating design tradeoffs in partial order planning. Artificial Intelligence, 76:167–238.
  • Kant [1787] Kant, I. [1787]. The Critique of Pure Reason. https://gutenberg.org/ebooks/4280.
  • Karimi et al. [2016] Karimi, H., Nutini, J., and Schmidt, M. [2016]. Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition. In European Conference on Machine Learning (ECML).
  • Karpathy [2015] Karpathy, A. [2015]. The unreasonable effectiveness of recurrent neural networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
  • Katoch et al. [2021] Katoch, S., Chauhan, S. S., and Kumar, V. [2021]. A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5):8091–8126. http://dx.doi.org/10.1007/s11042-020-10139-6.
  • Kautz and Selman [1996] Kautz, H. and Selman, B. [1996]. Pushing the envelope: Planning, propositional logic and stochastic search. In 13th National Conference on Artificial Intelligence, pp. 1194–1201.
  • Kazemi and Poole [2018] Kazemi, S. M. and Poole, D. [2018]. SimplE embedding for link prediction in knowledge graphs. In 32nd Conference on Neural Information Processing Systems.
  • Ke et al. [2017] Ke, G., et al. [2017]. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30.
  • Kearns et al. [2002] Kearns, M., Mansour, Y., and Ng, A. [2002]. A sparse sampling algorithm for near-optimal planning in large Markovian decision processes. Machine Learning, 49:193–208.
  • Keeney and Raiffa [1976] Keeney, R. L. and Raiffa, H. [1976]. Decisions with Multiple Objectives. Wiley.
  • Kendall and McGuinness [2019] Kendall, E. F. and McGuinness, D. L. [2019]. Ontology Engineering. Springer. http://dx.doi.org/10.1007/978-3-031-79486-5.
  • Khardon and Sanner [2021] Khardon, R. and Sanner, S. [2021]. Stochastic planning and lifted inference. In Van den Broeck, G., Kersting, K., Natarajan, S., and Poole, D. (eds.), Introduction to Lifted Inference. MIT Press.
  • King [2007] King, G. [2007]. An introduction to the dataverse network as an infrastructure for data sharing. Sociological Methods and Research, 36(2):173–199.
  • King et al. [2004] King, R., et al. [2004]. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427:247–252. http://www.doc.ic.ac.uk/˜shm/Papers/Oliver˙Jan15˙hi.pdf.
  • King et al. [2009a] King, R. D., et al. [2009a]. The automation of science. Science, 324(5923):85–89. http://dx.doi.org/10.1126/science.1165620.
  • King et al. [2009b] King, R. D., et al. [2009b]. The robot scientist Adam. Computer, 42(8):46–54. http://dx.doi.org/10.1109/MC.2009.270.
  • Kirkpatrick et al. [1983] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. [1983]. Optimization by simulated annealing. Science, 220:671–680.
  • Kirsh [1991a] Kirsh, D. [1991a]. Foundations of AI: The big issues. Artificial Intelligence, 47:3–30.
  • Kirsh [1991b] Kirsh, D. [1991b]. Today the earwig, tomorrow man? Artificial Intelligence, 47:161–184.
  • Kleinberg et al. [2020] Kleinberg, J., Ludwig, J., Mullainathan, S., and Sunstein, C. R. [2020]. Algorithms as discrimination detectors. In National Academy of Sciences.
  • Knoll et al. [2008] Knoll, B., et al. [2008]. AIspace: Interactive tools for learning artificial intelligence. In AAAI 2008 AI Education Workshop, p. 3.
  • Knox and Stone [2009] Knox, W. B. and Stone, P. [2009]. Interactively shaping agents via human reinforcement: The TAMER framework. In Fifth International Conference on Knowledge Capture, pp. 9–16. http://dx.doi.org/10.1145/1597735.1597738.
  • Knublauch et al. [2006] Knublauch, H., Oberle, D., Tetlow, P., and Wallace, E. [2006]. A semantic web primer for object-oriented software developers. Working Group Note 9 March 2006, W3C. http://www.w3.org/TR/sw-oosd-primer/.
  • Knuth and Moore [1975] Knuth, D. E. and Moore, R. W. [1975]. An analysis of alpha-beta pruning. Artificial Intelligence, 6(4):293–326.
  • Kochenderfer [2015] Kochenderfer, M. J. [2015]. Decision Making Under Uncertainty. MIT Press.
  • Kochenderfer et al. [2022] Kochenderfer, M. J., Wheeler, T. A., and Wray, K. H. [2022]. Algorithms for Decision Making. MIT Press. https://algorithmsbook.com.
  • Kocsis and Szepesvári [2006] Kocsis, L. and Szepesvári, C. [2006]. Bandit based Monte-Carlo planning. In 17th European Conference on Machine Learning (ECML), pp. 282–293.
  • Koller and Friedman [2009] Koller, D. and Friedman, N. [2009]. Probabilisitic Graphical Models: Principles and Techniques. MIT Press.
  • Koller and Milch [2003] Koller, D. and Milch, B. [2003]. Multi-agent influence diagrams for representing and solving games. Games and Economic Behavior, 45(1):181–221. http://people.csail.mit.edu/milch/papers/geb-maid.pdf.
  • Koopmans [1972] Koopmans, T. [1972]. Representations of preference orderings over time. In McGuire, C. and Radner, R. (eds.), Decisions and Organization. North-Holland.
  • Koren and Bell [2011] Koren, Y. and Bell, R. [2011]. Advances in collaborative filtering. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (eds.), Recommender Systems Handbook, pp. 145–186. Springer. http://dx.doi.org/10.1007/978-0-387-85820-3˙5.
  • Koren et al. [2009] Koren, Y., Bell, R., and Volinsky, C. [2009]. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37.
  • Korf [1985] Korf, K. E. [1985]. Depth-first iterative deepening: An optimal admissible tree search. Artificial Intelligence, 27(1):97–109.
  • Kowalski [1979] Kowalski, R. [1979]. Algorithm = logic + control. Communications of the ACM, 22:424–431.
  • Kowalski [1974] Kowalski, R. A. [1974]. Predicate logic as a programming language. In Information Processing 74, pp. 569–574. North-Holland.
  • Kowalski [1988] Kowalski, R. A. [1988]. The early history of logic programming. Communications of the ACM, 31(1):38–43.
  • Kowalski [2014] Kowalski, R. A. [2014]. Logic for Problem Solving, Revisited. Books on Demand.
  • Kramár et al. [2022] Kramár, J., et al. [2022]. Negotiation and honesty in artificial intelligence methods for the board game of diplomacy. Nature Communications, 13(1):7214. http://dx.doi.org/10.1038/s41467-022-34473-5.
  • Krizhevsky et al. [2012] Krizhevsky, A., Sutskever, I., and Hinton, G. [2012]. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, pp. 1090–1098.
  • Krötzsch [2012] Krötzsch, M. [2012]. OWL 2 Profiles: An introduction to lightweight ontology languages. In Eiter, T. and Krennwallner, T. (eds.), 8th Reasoning Web Summer School, Vienna, Austria, pp. 112–183. Springer. http://korrekt.org/page/OWL˙2˙Profiles.
  • Kuppe et al. [2019] Kuppe, M. A., Lamport, L., and Ricketts, D. [2019]. The TLA+ toolbox. Electronic Proceedings in Theoretical Computer Science, 310:50–62. http://dx.doi.org/10.4204/eptcs.310.6.
  • Lacroix et al. [2018] Lacroix, T., Usunier, N., and Obozinski, G. [2018]. Canonical tensor decomposition for knowledge base completion. In 35th International Conference on Machine Learning (ICML).
  • Lakshmanan et al. [2021] Lakshmanan, V., Görner, M., and Gillard, R. [2021]. Practical Machine Learning for Computer Vision: End-to-End Machine Learning for Images. O’Reilly.
  • Lally et al. [2012] Lally, A., et al. [2012]. Question analysis: How Watson reads a clue. IBM Journal of Research and Development, 56(3/4).
  • Lamport [2002] Lamport, L. [2002]. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman.
  • Langley et al. [1992] Langley, P., Iba, W., and Thompson, K. [1992]. An analysis of Bayesian classifiers. In 10th National Conference on Artificial Intelligence, pp. 223–228.
  • Langton [1997] Langton, C. G. [1997]. Artificial Life: An Overview. MIT Press.
  • Laplace [1812] Laplace, P. [1812]. Théorie Analytique de Probabilités. Courcier.
  • Latombe [1991] Latombe, J.-C. [1991]. Robot Motion Planning. Kluwer Academic.
  • Lawler and Wood [1966] Lawler, E. L. and Wood, D. E. [1966]. Branch-and-bound methods: A survey. Operations Research, 14(4):699–719.
  • LeCun et al. [2015] LeCun, Y., Bengio, Y., and Hinton, G. [2015]. Deep learning. Nature, 521(7553):436–444.
  • LeCun et al. [1998a] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. [1998a]. Gradient-based learning applied to document recognition. IEEE, 86(11):2278–2324. http://dx.doi.org/10.1109/5.726791.
  • LeCun et al. [1998b] LeCun, Y., Bottou, L., Orr, G., and Muller, K. [1998b]. Efficient backprop. In Orr, G. and Muller, K.-R. (eds.), Neural Networks: Tricks of the Trade. Springer. http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.
  • Lehman et al. [2018] Lehman, J., Clune, J., Misevic, D., et al. [2018]. The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities. CoRR. http://arxiv.org/abs/1803.03453.
  • Leibniz [1677] Leibniz, G. W. [1677]. The Method of Mathematics: Preface to the General Science. Selections reprinted by Chrisley and Begeer [2000].
  • Leibniz [1705] Leibniz, G. W. [1705]. New Essays on Human Understanding. Book 3. www.earlymoderntexts.com.
  • Lenat and Feigenbaum [1991] Lenat, D. B. and Feigenbaum, E. A. [1991]. On the thresholds of knowledge. Artificial Intelligence, 47:185–250.
  • Lepikhin et al. [2021] Lepikhin, D., et al. [2021]. GShard: Scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations. https://openreview.net/pdf?id=qrwe7XHTmYb.
  • Lertvittayakumjorn and Toni [2021] Lertvittayakumjorn, P. and Toni, F. [2021]. Explanation-based human debugging of NLP models: A survey. Transactions of the Association for Computational Linguistics, 9:1508–1528. http://dx.doi.org/10.1162/tacl˙a˙00440.
  • Levesque [1984] Levesque, H. J. [1984]. Foundations of a functional approach to knowledge representation. Artificial Intelligence, 23(2):155–212.
  • Levesque [2012] Levesque, H. J. [2012]. Thinking as Computation. MIT Press.
  • Levesque [2014] Levesque, H. J. [2014]. On our best behaviour. Artificial Intelligence, 212:27–35.
  • Levy [2021] Levy, R. [2021]. Social media, news consumption, and polarization: Evidence from a field experiment. American Economic Review, 111(3):831–70. http://dx.doi.org/10.1257/aer.20191777.
  • Leyton-Brown et al. [2017] Leyton-Brown, K., Milgrom, P. R., and Segal, I. [2017]. Economics and computer science of a radio spectrum reallocation. National Academy of Sciences, 114:7202 – 7209.
  • Leyton-Brown and Shoham [2008] Leyton-Brown, K. and Shoham, Y. [2008]. Essentials of Game Theory. Morgan & Claypool.
  • Li [2018] Li, Y. [2018]. Deep reinforcement learning. CoRR, abs/1810.06339. http://arxiv.org/abs/1810.06339.
  • Li et al. [2016] Li, Y., et al. [2016]. A survey on truth discovery. SIGKDD Explorations Newsletter, 17(2):1–16. http://dx.doi.org/10.1145/2897350.2897352.
  • Liao et al. [2021] Liao, T., Taori, R., Raji, D., and Schmidt, L. [2021]. Are we learning yet? A meta review of evaluation failures across machine learning. In Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks. https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/757b505cfd34c64c85ca5b5690ee5293-Abstract-round2.html.
  • Lin et al. [2017] Lin, A. Y., Kuehl, K., Schöning, J., and Hecht, B. [2017]. Understanding ”death by GPS”: A systematic study of catastrophic incidents associated with personal navigation technologies. In CHI Conference on Human Factors in Computing Systems. http://dx.doi.org/10.1145/3025453.3025737.
  • Lindholm et al. [2022] Lindholm, T., et al. [2022]. The Java Virtual Machine Specification: Java SE 19 Edition. Oracle America, Inc. https://docs.oracle.com/javase/specs/jvms/se19/jvms19.pdf.
  • Little and Rubin [1987] Little, R. J. A. and Rubin, D. B. [1987]. Statistical Analysis with Missing Data. Wiley.
  • Littman et al. [2021] Littman, M. L., et al. [2021]. Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report. Stanford University. http://ai100.stanford.edu/2021-report.
  • Liu et al. [2006] Liu, A. L., et al. [2006]. Indoor wayfinding: Developing a functional interface for individuals with cognitive impairments. In 8th International ACM SIGACCESS Conference on Computers and Accessibility.
  • Lloyd [1987] Lloyd, J. W. [1987]. Foundations of Logic Programming. Symbolic Computation Series. Springer-Verlag, 2nd edition.
  • Lloyd [1982] Lloyd, S. [1982]. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137. http://dx.doi.org/10.1109/TIT.1982.1056489.
  • Lopez and Bacchus [2003] Lopez, A. and Bacchus, F. [2003]. Generalizing GraphPlan by formulating planning as a CSP. In 18th International Joint Conference Artificial Intelligence (IJCAI), pp. 954–960.
  • Luenberger [1979] Luenberger, D. G. [1979]. Introduction to Dynamic Systems: Theory, Models and Applications. Wiley.
  • Lum and Isaac [2016] Lum, K. and Isaac, W. [2016]. To predict and serve? Significance, 13(5).
  • Lundgren [2023] Lundgren, B. [2023]. In defense of ethical guidelines. AI and Ethics. http://dx.doi.org/10.1007/s43681-022-00244-7.
  • Ma et al. [2022] Ma, Y., et al. [2022]. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology, 40(6):921–931. http://dx.doi.org/10.1038/s41587-022-01226-0.
  • MacKay [2003] MacKay, D. [2003]. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.
  • Mackworth [1977a] Mackworth, A. K. [1977a]. Consistency in networks of relations. Artificial Intelligence, 8:99–118.
  • Mackworth [1977b] Mackworth, A. K. [1977b]. On reading sketch maps. In Fifth International Joint Conference on Artificial Intelligence, pp. 598–606.
  • Mackworth [1993] Mackworth, A. K. [1993]. On seeing robots. In Basu, A. and Li, X. (eds.), Computer Vision: Systems, Theory, and Applications, pp. 1–13. World Scientific Press.
  • Mackworth [2009] Mackworth, A. K. [2009]. Agents, bodies, constraints, dynamics and evolution. AI Magazine.
  • Mackworth [2011] Mackworth, A. K. [2011]. Architectures and ethics for robots: Constraint satisfaction as a unitary design framework. In Anderson, M. and Anderson, S. L. (eds.), Machine Ethics, pp. 335–360. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511978036.024.
  • Mackworth and Zhang [2003] Mackworth, A. K. and Zhang, Y. [2003]. A formal approach to agent design: An overview of constraint-based agents. Constraints, 8(3):229–242.
  • Mackworth [1970] Mackworth, J. F. [1970]. Vigilance and Attention: A Signal Detection Approach. Penguin.
  • Mackworth [1948] Mackworth, N. H. [1948]. The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology, 1(1):6–21. http://dx.doi.org/10.1080/17470214808416738.
  • Mahdisoltani et al. [2015] Mahdisoltani, F., Biega, J., and Suchanek, F. M. [2015]. YAGO3: A knowledge base from multilingual wikipedias. In Conference on Innovative Data Systems Research (CIDR 2015). http://suchanek.name/work/publications/cidr2015.pdf.
  • Malthus [1798] Malthus, T. R. [1798]. An Essay on the Principle of Population: As it Affects the Future Improvement of Society. J. Johnson.
  • Manning and Schütze [1999] Manning, C. and Schütze, H. [1999]. Foundations of Statistical Natural Language Processing. MIT Press.
  • Marcus and Davis [2019] Marcus, G. and Davis, E. [2019]. Rebooting AI: Building Artificial Intelligence We Can Trust. Pantheon.
  • Marlin et al. [2011] Marlin, B. M., Zemel, R. S., Roweis, S. T., and Slaney, M. [2011]. Recommender systems, missing data and statistical model estimation. In 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 2686–2691.
  • Matheson [1990] Matheson, J. E. [1990]. Using influence diagrams to value information and control. In Oliver, R. M. and Smith, J. Q. (eds.), Influence Diagrams, Belief Nets and Decision Analysis, chapter 1, pp. 25–48. Wiley.
  • Mausam and Kolobov [2012] Mausam and Kolobov, A. [2012]. Planning with Markov Decision Processes: An AI Perspective. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00426ED1V01Y201206AIM017.
  • McAllester and Rosenblitt [1991] McAllester, D. and Rosenblitt, D. [1991]. Systematic nonlinear planning. In 9th National Conference on Artificial Intelligence, pp. 634–639.
  • McCarthy [1958] McCarthy, J. [1958]. Programs with common sense. In Teddington Conference on the Mechanization of Thought Processes. http://jmc.stanford.edu/articles/mcc59/mcc59.pdf.
  • McCarthy [1986] McCarthy, J. [1986]. Applications of circumscription to formalizing common-sense knowledge. Artificial Intelligence, 28(1):89–116.
  • McCarthy and Hayes [1969] McCarthy, J. and Hayes, P. J. [1969]. Some philosophical problems from the standpoint of artificial intelligence. In Meltzer, M. and Michie, D. (eds.), Machine Intelligence 4, pp. 463–502. Edinburgh University Press.
  • McCulloch and Pitts [1943] McCulloch, W. and Pitts, W. [1943]. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.
  • McDermott and Hendler [1995] McDermott, D. and Hendler, J. [1995]. Planning: What it is, what it could be, an introduction to the special issue on planning and scheduling. Artificial Intelligence, 76:1–16.
  • McElreath [2020] McElreath, R. [2020]. Statistical Rethinking: A Bayesian Course with Examples in R and STAN. Chapman & Hall. https://xcelab.net/rm/statistical-rethinking/.
  • McFadden [2000] McFadden, D. L. [2000]. Prize lecture. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2000. https://www.nobelprize.org/prizes/economic-sciences/2000/mcfadden/lecture/.
  • McGuffie and Newhouse [2020] McGuffie, K. and Newhouse, A. [2020]. The radicalization risks of GPT-3 and advanced neural language model. Technical report, Center on Terrorism, Extremism, and Counterterrorism, Middlebury Institute of International Studies at Monterrey. https://www.middlebury.edu/institute/sites/www.middlebury.edu.institute/files/2020-09/gpt3-article.pdf.
  • McLuhan [1962] McLuhan, M. [1962]. The Gutenberg Galaxy: The Making of Typographic Man. University of Toronto Press.
  • Meir and Rätsch [2003] Meir, R. and Rätsch, G. [2003]. An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning, pp. 119–184. Springer.
  • Michie [1963] Michie, D. [1963]. Experiments on the mechanisation of game learning. 1. Characterization of the model and its parameters. Computer Journal, 1:232–263.
  • Michie et al. [1994] Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (eds.) [1994]. Machine Learning, Neural and Statistical Classification. Series in Artificial Intelligence. Ellis Horwood.
  • Mihailidis et al. [2007] Mihailidis, A., Boger, J., Candido, M., and Hoey, J. [2007]. The use of an intelligent prompting system for people with dementia. ACM Interactions, 14(4):34–37.
  • Mikolov et al. [2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. [2013]. Efficient estimation of word representations in vector space. http://dx.doi.org/10.48550/arXiv.1301.3781.
  • Milch et al. [2005] Milch, B., et al. [2005]. BLOG: Probabilistic models with unknown objects. In 19th International Joint Conference Artificial Intelligence (IJCAI-05).
  • Minaee et al. [2021] Minaee, S., et al. [2021]. Deep learning–based text classification: A comprehensive review. ACM Computing Surveys, 54(3). http://dx.doi.org/10.1145/3439726.
  • Minsky [1952] Minsky, M. L. [1952]. A neural-analogue calculator based upon a probability model of reinforcement. Technical report, Harvard University Psychological Laboratories.
  • Minsky [1961] Minsky, M. L. [1961]. Steps towards artificial intelligence. IEEE, 49:8–30. http://web.media.mit.edu/˜minsky/papers/steps.html.
  • Minsky [1975] Minsky, M. L. [1975]. A framework for representing knowledge. In Winston, P. (ed.), The Psychology of Computer Vision, pp. 211–277. McGraw-Hill. Alternative version is in Haugeland [1997].
  • Minsky [1986] Minsky, M. L. [1986]. The Society of Mind. Simon & Schuster.
  • Minsky and Papert [1988] Minsky, M. L. and Papert, S. [1988]. Perceptrons: An Introduction to Computational Geometry. MIT Press, expanded edition.
  • Minton et al. [1992] Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. [1992]. Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1–3):161–205.
  • Mitchell [1996] Mitchell, M. [1996]. An Introduction to Genetic Algorithms. MIT Press.
  • Mitchell [1997] Mitchell, T. [1997]. Machine Learning. McGraw-Hill. http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html.
  • Mnih et al. [2015] Mnih, V. et al. [2015]. Human-level control through deep reinforcement learning. Nature, 518:529–533. http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html.
  • Mohan [2022] Mohan, K. [2022]. Causal graphs for missing data: A gentle introduction. In Probabilistic and Causal Inference: The Works of Judea Pearl. ACM Books.
  • Mohan et al. [2013] Mohan, K., Pearl, J., and Tian, J. [2013]. Graphical models for inference with missing data. In Advances in Neural Information Processing Systems, volume 26, pp. 1277–1285.
  • Mole [2010] Mole, C. [2010]. Attention Is Cognitive Unison: An Essay in Philosophical Psychology. Oxford University Press. http://dx.doi.org/10.1093/acprof:oso/9780195384529.001.0001.
  • Moore [1959] Moore, E. F. [1959]. The shortest path through a maze. In International Symposium on the Theory of Switching, pp. 285–292. Harvard University Press.
  • Moore et al. [2020] Moore, T. J., Heyward, J., Anderson, G., and Alexander, G. C. [2020]. Variation in the estimated costs of pivotal clinical benefit trials supporting the US approval of new therapeutic agents, 2015–2017: A cross-sectional study. BMJ Open, 10(6). http://dx.doi.org/10.1136/bmjopen-2020-038863.
  • Morin and Bengio [2005] Morin, F. and Bengio, Y. [2005]. Hierarchical probabilistic neural network language model. In international Workshop on Artificial Intelligence and Statistics, pp. 246–252,.
  • Motik et al. [2012] Motik, B., Patel-Schneider, P. F., and Grau, B. C. (eds.) [2012]. OWL 2 Web Ontology Language: Direct Semantics. W3C Recommendation 11 December 2012, 2nd edition. http://www.w3.org/TR/owl2-direct-semantics/.
  • Munn [2022] Munn, L. [2022]. The uselessness of AI ethics. AI and Ethics. https://doi.org/10.1007/s43681-022-00209-w.
  • Murphy [2022] Murphy, K. P. [2022]. Probabilistic Machine Learning: An Introduction. MIT Press. https://probml.github.io/pml-book/book1.html.
  • Murphy [2023] Murphy, K. P. [2023]. Probabilistic Machine Learning: Advanced Topics. MIT Press. http://probml.github.io/book2.
  • Muscettola et al. [1998] Muscettola, N., Nayak, P., Pell, B., and Williams, B. [1998]. Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103:5–47.
  • NASA [2022] NASA [2022]. EarthData: Open access for open science. https://www.earthdata.nasa.gov.
  • Nash [1950] Nash, J. F. [1950]. Equilibrium points in N-person games. National Academy of Sciences of the United States of America, 36:48–49.
  • Nau [2007] Nau, D. S. [2007]. Current trends in automated planning. AI Magazine, 28(4):43–58.
  • Neufeld et al. [2019] Neufeld, X., Mostaghim, S., Sancho-Pradel, D. L., and Brand, S. [2019]. Building a planner: A survey of planning systems used in commercial video games. IEEE Transactions on Games, 11(2):91–108. http://dx.doi.org/10.1109/TG.2017.2782846.
  • Neumann and Morgenstern [1953] Neumann, J. V. and Morgenstern, O. [1953]. Theory of Games and Economic Behavior. Princeton University Press, 3rd edition.
  • Neville and Jensen [2007] Neville, J. and Jensen, D. [2007]. Relational dependency networks. Journal of Machine Learning Research (JMLR), 8:653–692.
  • New York Times [1958] New York Times [1958]. New Navy device learns by doing: Psychologist shows embryo of computer designed to read and grow wiser. https://timesmachine.nytimes.com/timesmachine/1958/07/08/83417341.html?pageNumber=25.
  • Newell and Simon [1956] Newell, A. and Simon, H. A. [1956]. The logic theory machine: A complex information processing system. Technical Report P-868, The Rand Corporation. http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf.
  • Newell and Simon [1976] Newell, A. and Simon, H. A. [1976]. Computer science as empirical enquiry: Symbols and search. Communications of the ACM, 19:113–126.
  • Ng [2018] Ng, A. [2018]. Machine Learning Yearning. deeplearning.ai. https://www.deeplearning.ai/resources/.
  • Ng [2004] Ng, A. Y. [2004]. Feature selection, L1 vs. L2 regularization, and rotational invariance. In Twenty-First International Conference on Machine Learning.
  • Ng and Russell [2000] Ng, A. Y. and Russell, S. J. [2000]. Algorithms for inverse reinforcement learning. In International Conference on Machine Learning (ICML), pp. 663–670.
  • Niles and Pease [2001] Niles, I. and Pease, A. [2001]. Towards a standard upper ontology. In Welty, C. and Smith, B. (eds.), 2nd International Conference on Formal Ontology in Information Systems (FOIS-2001).
  • Nilsson [2007] Nilsson, N. J. [2007]. The physical symbol system hypothesis: Status and prospects. In Lungarella, M. et al. (eds.), 50 Years of AI, Festschrift, pp. 9–17. Springer. http://ai.stanford.edu/˜nilsson/OnlinePubs-Nils/PublishedPapers/pssh.pdf.
  • Nilsson [2010] Nilsson, N. J. [2010]. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press.
  • Nisan [2007] Nisan, N. [2007]. Introduction to mechanisn design (for computer scientists). In Nisan, N. et al. (eds.), Algorithmic Game Theory, chapter 9, pp. 209–242. Cambridge University Press.
  • Noble [2018] Noble, S. U. [2018]. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.
  • Nocedal and Wright [2006] Nocedal, J. and Wright, S. [2006]. Numerical Optimization. Springer-Verlag.
  • Nyholm [2021] Nyholm, S. [2021]. The ethics of human-robot interaction and traditional moral theories. In The Oxford Handbook of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.3.
  • Obermeyer et al. [2019] Obermeyer, Z., Powers, B., Vogeli, C., and Mullainathan, S. [2019]. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447–453.
  • OECD [2019] OECD [2019]. OECD AI principles. https://oecd.ai/en/ai-principles.
  • Office of Science and Technology Policy [2022] Office of Science and Technology Policy [2022]. The blueprint for an AI bill of rights. https://www.whitehouse.gov/ostp/ai-bill-of-rights/.
  • Olah [2015] Olah, C. [2015]. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
  • O’Neil [2016] O’Neil, C. [2016]. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown.
  • OpenAI [2022] OpenAI [2022]. ChatGPT: Optimizing language models for dialogue. https://openai.com/blog/chatgpt/.
  • OpenAI [2023] OpenAI [2023]. GPT-4 technical report. ArXiv e-prints, arXiv:2303.08774.
  • Ordeshook [1986] Ordeshook, P. C. [1986]. Game Theory and Political Theory: An Introduction. Cambridge University Press.
  • Orkin [2006] Orkin, J. [2006]. Three states and a plan: The AI of F.E.A.R. In Game Developers Conference.
  • Ostrom [1990] Ostrom, E. [1990]. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press.
  • Page et al. [1999] Page, L., Brin, S., Motwani, R., and Winograd, T. [1999]. The PageRank citation ranking: Bringing order to the Web. Technical Report SIDL-WP-1999-0120, Stanford InfoLab.
  • Panton et al. [2006] Panton, K., et al. [2006]. Common sense reasoning – from Cyc to intelligent assistant. In Cai, Y. and Abascal, J. (eds.), Ambient Intelligence in Everyday Life, pp. 1–31. Springer.
  • Pasula et al. [2003] Pasula, H., et al. [2003]. Identity uncertainty and citation matching. In Advances in Neural Information Processing Systems, volume 15.
  • Pearl [1984] Pearl, J. [1984]. Heuristics. Addison-Wesley.
  • Pearl [1988] Pearl, J. [1988]. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
  • Pearl [2009] Pearl, J. [2009]. Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd edition.
  • Pearl and Mackenzie [2018] Pearl, J. and Mackenzie, D. [2018]. The Book of Why: The New Science of Cause and Effect. Basic Books.
  • Pease [2011] Pease, A. [2011]. Ontology: A Practical Guide. Articulate Software Press.
  • Peden et al. [2004] Peden, M. et al. (eds.) [2004]. World Report on Road Traffic Injury Prevention. World Health Organization.
  • Pereira and Shieber [2002] Pereira, F. C. N. and Shieber, S. M. [2002]. Prolog and Natural-Language Analysis. Microtome Publishing.
  • Perrault et al. [2020] Perrault, A., Fang, F., Sinha, A., and Tambe, M. [2020]. Artificial intelligence for social impact: Learning and planning in the data-to-deployment pipeline. AI Magazine, 41(4):3–16. http://dx.doi.org/10.1609/aimag.v41i4.5296.
  • Peters et al. [2018] Peters, M. E., et al. [2018]. Deep contextualized word representations. In 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. http://dx.doi.org/10.18653/v1/N18-1202.
  • Phuong and Hutter [2022] Phuong, M. and Hutter, M. [2022]. Formal algorithms for transformers. http://dx.doi.org/10.48550/arXiv.2207.09238.
  • Piaget [1953] Piaget, J. [1953]. The Origin of Intelligence in the Child. Routledge & Kegan Paul.
  • Pinker [1997] Pinker, S. [1997]. How the Mind Works. Norton.
  • Pohl [1971] Pohl, I. [1971]. Bi-directional search. Machine Intelligence, 6(127–140).
  • Pollack [2005] Pollack, M. E. [2005]. Intelligent technology for an aging population: The use of AI to assist elders with cognitive impairment. AI Magazine, 26(2):9–24.
  • Poole [1993] Poole, D. [1993]. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1):81–129.
  • Poole [2007] Poole, D. [2007]. Logical generative models for probabilistic reasoning about existence, roles and identity. In 22nd AAAI Conference on AI (AAAI-07). http://cs.ubc.ca/˜poole/papers/AAAI07-Poole.pdf.
  • Poole et al. [1987] Poole, D., Goebel, R., and Aleliunas, R. [1987]. Theorist: A logical reasoning system for defaults and diagnosis. In Cercone, N. and McCalla, G. (eds.), The Knowledge Frontier: Essays in the Representation of Knowledge, pp. 331–352. Springer-Verlag.
  • Posner [1989] Posner, M. I. (ed.) [1989]. Foundations of Cognitive Science. MIT Press.
  • Powell [2022] Powell, W. B. [2022]. Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. Wiley. https://castlelab.princeton.edu/RLSO/.
  • Prabhu and Birhane [2020] Prabhu, V. U. and Birhane, A. [2020]. Large image datasets: A pyrrhic win for computer vision? http://dx.doi.org/10.48550/arXiv.2006.16923.
  • Pujara et al. [2015] Pujara, J., Miao, H., Getoor, L., and Cohen, W. W. [2015]. Using semantics and statistics to turn data into knowledge. AI Magazine, 36(1):65–74. http://dx.doi.org/10.1609/aimag.v36i1.2568.
  • Puterman [1994] Puterman, M. [1994]. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley.
  • Qian et al. [2021] Qian, K., et al. [2021]. XNLP: A living survey for XAI research in natural language processing. In 26th International Conference on Intelligent User Interfaces, pp. 78–80. http://dx.doi.org/10.1145/3397482.3450728.
  • Qiu et al. [2020] Qiu, X., et al. [2020]. Pre-trained models for natural language processing: A survey. CoRR, abs/2003.08271. https://arxiv.org/abs/2003.08271.
  • Quinlan [1993] Quinlan, J. R. [1993]. C4.5 Programs for Machine Learning. Morgan Kaufmann.
  • Rabiner [1989] Rabiner, L. [1989]. A tutorial on hidden Markov models and selected applications in speech recognition. IEEE, 77(2):257–286.
  • Rae et al. [2021] Rae, J. W., et al. [2021]. Scaling language models: Methods, analysis & insights from training gopher. CoRR, abs/2112.11446. https://arxiv.org/abs/2112.11446.
  • Rakova et al. [2021] Rakova, B., Yang, J., Cramer, H., and Chowdhury, R. [2021]. Where responsible AI meets reality: Practitioner perspectives on enablers for shifting organizational practices. Proceedings of the ACM on Human-Computer Interaction, 5. http://dx.doi.org/10.1145/3449081.
  • Randell [1982] Randell, B. [1982]. From analytical engine to electronic digital computer: The contributions of ludgate, torres, and bush. Annals of the History of Computing, 4(4).
  • Real et al. [2020] Real, E., Liang, C., So, D. R., and Le, Q. V. [2020]. AutoML-Zero: Evolving machine learning algorithms from scratch. In 37th International Conference on Machine Learning. http://dx.doi.org/10.48550/arXiv.2003.03384.
  • Richtel [2014] Richtel, M. [2014]. A Deadly Wandering: A Mystery, a Landmark Investigation, and the Astonishing Science of Attention in the Digital Age. HarperCollins.
  • Roberts [1965] Roberts, L. [1965]. Machine Perception of 3-D Solids. MIT Press.
  • Robillard [2021] Robillard, M. [2021]. The ethics of weaponized AI. In The Oxford Handbook of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.29.
  • Robinson [1965] Robinson, J. A. [1965]. A machine-oriented logic based on the resolution principle. Journal ACM, 12(1):23–41.
  • Rockström et al. [2009] Rockström, J., et al. [2009]. A safe operating space for humanity. Nature, 461(7263):472–475.
  • Rogers et al. [2023] Rogers, Y., Sharp, H., and Preece, J. [2023]. Interaction Design: Beyond Human-Computer Interaction. Wiley, 6th edition.
  • Rosenblatt [1958] Rosenblatt, F. [1958]. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386–408.
  • Rosenschein and Kaelbling [1995] Rosenschein, S. J. and Kaelbling, L. P. [1995]. A situated view of representation and control. Artificial Intelligence, 73:149–173.
  • Rossi et al. [2011] Rossi, F., Venable, K. B., and Walsh, T. [2011]. A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00372ED1V01Y201107AIM014.
  • Rubin [1976] Rubin, D. B. [1976]. Inference and missing data. Biometrika, 63(3):581–592.
  • Rubinstein [1981] Rubinstein, R. Y. [1981]. Simulation and the Monte Carlo Method. Wiley.
  • Ruder [2016] Ruder, S. [2016]. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747. http://arxiv.org/abs/1609.04747.
  • Rudin et al. [2022] Rudin, C., et al. [2022]. Interpretable machine learning: Fundamental principles and 10 grand challenges. Statistics Surveys, 16:1–85. http://dx.doi.org/10.1214/21-SS133.
  • Rumelhart et al. [1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. [1986]. Learning internal representations by error propagation. In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel Distributed Processing, chapter 8, pp. 318–362. MIT Press.
  • Russakovsky et al. [2014] Russakovsky, O., et al. [2014]. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575. http://arxiv.org/abs/1409.0575.
  • Russell [1997] Russell, S. [1997]. Rationality and intelligence. Artificial Intelligence, 94:57–77.
  • Russell [2019] Russell, S. [2019]. Human Compatible: AI and the Problem of Control. Penguin Books Limited.
  • Russell and Norvig [2020] Russell, S. and Norvig, P. [2020]. Artificial Intelligence: A Modern Approach (4th Edition). Pearson. http://aima.cs.berkeley.edu/.
  • Russo et al. [2018] Russo, D., et al. [2018]. A tutorial on Thompson sampling. Foundations and Trends in Machine Learning,, 11(1):1–96. http://dx.doi.org/10.48550/arXiv.1707.02038.
  • Sacerdoti [1975] Sacerdoti, E. D. [1975]. The nonlinear nature of plans. In 4th International Joint Conference on Artificial Intelligence, pp. 206–214.
  • Salimans et al. [2017] Salimans, T., et al. [2017]. Evolution strategies as a scalable alternative to reinforcement learning. http://dx.doi.org/10.48550/arXiv.1703.03864.
  • Samuel [1959] Samuel, A. L. [1959]. Some studies in machine learning using the game of checkers. IBM Journal on Research and Development, 3(3):210–229.
  • Sandholm [2007] Sandholm, T. [2007]. Expressive commerce and its application to sourcing: How we conducted $35 billion of generalized combinatorial auctions. AI Magazine, 28(3):45–58.
  • Satterthwaite [1975] Satterthwaite, M. [1975]. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10:187–217.
  • Savage [1972] Savage, L. J. [1972]. The Foundation of Statistics. Dover, 2nd edition.
  • Schank [1990] Schank, R. C. [1990]. What is AI, anyway? In Partridge, D. and Wilks, Y. (eds.), The Foundations of Artificial Intelligence, pp. 3–13. Cambridge University Press.
  • Schapire [2002] Schapire, R. E. [2002]. The boosting approach to machine learning: An overview. In MSRI Workshop on Nonlinear Estimation and Classification. Springer-Verlag.
  • Schlichtkrull et al. [2018] Schlichtkrull, M., et al. [2018]. Modeling relational data with graph convolutional networks. In European Semantic Web Conference (ESWC 2018), pp. 593–607. Springer. https://arxiv.org/abs/1703.06103.
  • Schmidhuber [1990] Schmidhuber, J. [1990]. Making the world differentiable: On using fully recurrent self-supervised neural networks for dynamic reinforcement learning and planning in non-stationary environments. Technical Report FKI-126-90, T.U. Munich.
  • Schmidhuber [2015] Schmidhuber, J. [2015]. Deep learning in neural networks: An overview. Neural Networks, 61:85–117. http://dx.doi.org/10.1016/j.neunet.2014.09.003.
  • Schubert [2022] Schubert, E. [2022]. Stop using the elbow criterion for k-means and how to choose the number of clusters instead. http://dx.doi.org/10.48550/arXiv.2212.12189.
  • Schwarz [1978] Schwarz, G. [1978]. Estimating the dimension of a model. Annals of Statistics, 6(2):461–464. https://projecteuclid.org/euclid.aos/1176344136.
  • Seger [2021] Seger, C.-J. H. [2021]. Formal verification of complex data paths: An industrial experience. In FM.
  • Selinger and Leong [2021] Selinger, E. and Leong, B. [2021]. The ethics of facial recognition technology. In The Oxford Handbook of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.32.
  • Senior et al. [2020] Senior, A. W., et al. [2020]. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792):706–710. http://dx.doi.org/10.1038/s41586-019-1923-7.
  • Settles [2012] Settles, B. [2012]. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00429ED1V01Y201207AIM018.
  • Shachter and Peot [1992] Shachter, R. and Peot, M. A. [1992]. Decision making using probabilistic inference methods. In Eighth Conference on Uncertainty in Artificial Intelligence (UAI-92), pp. 276–283.
  • Shahriari et al. [2016] Shahriari, B., et al. [2016]. Taking the human out of the loop: A review of Bayesian optimization. IEEE, 104(1):148–175. http://dx.doi.org/10.1109/JPROC.2015.2494218.
  • Shanahan [2022] Shanahan, M. [2022]. Talking about large language models. http://dx.doi.org/10.48550/arXiv.2212.03551.
  • Shannon and Weaver [1949] Shannon, C. E. and Weaver, W. [1949]. The Mathematical Theory of Communication. University of Illinois Press.
  • Sharkey [2008] Sharkey, N. [2008]. The ethical frontiers of robotics. Science, 322(5909):1800–1801. DOI:10.1126/science.1164582.
  • Shavlik and Dietterich [1990] Shavlik, J. W. and Dietterich, T. G. (eds.) [1990]. Readings in Machine Learning. Morgan Kaufmann.
  • Shelley [1818] Shelley, M. W. [1818]. Frankenstein; or, The Modern Prometheus. Lackington, Hughes, Harding, Mavor & Jones.
  • Shneiderman [2022] Shneiderman, B. [2022]. Human-Centered AI. Oxford University Press.
  • Shoeybi et al. [2019] Shoeybi, M., et al. [2019]. Megatron-LM: Training multi-billion parameter language models using model parallelism. CoRR, abs/1909.08053. http://arxiv.org/abs/1909.08053.
  • Shoham [2016] Shoham, Y. [2016]. Why knowledge representation matters. Communications of the ACM, 59(1):47–49.
  • Shoham and Leyton-Brown [2008] Shoham, Y. and Leyton-Brown, K. [2008]. Multiagent Systems: Algorithmic, Game Theoretic, and Logical Foundations. Cambridge University Press.
  • Shpitser and Pearl [2008] Shpitser, I. and Pearl, J. [2008]. Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9:1941–1979.
  • Sikos et al. [2021] Sikos, L., Seneviratne, O., and McGuinness, D. L. [2021]. Provenance in Data Science: From Data Models to Context-Aware Knowledge Graphs. Springer. https://www.springer.com/gp/book/9783030676803.
  • Silver et al. [2021] Silver, D., Singh, S., Precup, D., and Sutton, R. S. [2021]. Reward is enough. Artificial Intelligence, 299. http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103535.
  • Silver et al. [2016] Silver, D., et al. [2016]. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489.
  • Silver et al. [2017] Silver, D., et al. [2017]. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815. http://arxiv.org/abs/1712.01815.
  • Simon [1971] Simon, H. A. [1971]. Designing organizations for an information rich world. In Greenberger, M. (ed.), Computers, Communications, and the Public Interest, pp. 37–72. Johns Hopkins Press.
  • Simon [1995] Simon, H. A. [1995]. Artificial intelligence: An empirical science. Artificial Intelligence, 77(1):95–127.
  • Simon [1996] Simon, H. A. [1996]. The Sciences of the Artificial. MIT Press, 3rd edition.
  • Singer [2009a] Singer, P. W. [2009a]. Robots at war: The new battlefield. The Wilson Quarterly.
  • Singer [2009b] Singer, P. W. [2009b]. Wired for War: The Robotics Revolution and Conflict in the 21st Century. Penguin.
  • Sinz et al. [2003] Sinz, C., Kaiser, A., and Küchlin, W. [2003]. Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 17:75 – 97.
  • Siu et al. [2021] Siu, H. C., et al. [2021]. Evaluation of human-AI teams for learned and rule-based agents in Hanabi. In Neural Information Processing Systems (NeurIPS). http://dx.doi.org/10.48550/arXiv.2107.07630.
  • Smith [2003] Smith, B. [2003]. Ontology. In Floridi, L. (ed.), Blackwell Guide to the Philosophy of Computing and Information, pp. 155–166. Blackwell. http://ontology.buffalo.edu/smith/articles/ontologies.htm.
  • Smith [2015] Smith, B. [2015]. Basic formal ontology 2.0: Specification and user’s guide. Technical report, Institute for Formal Ontology and Medical Information Science (IFOMIS). https://github.com/bfo-ontology/BFO/wiki.
  • Smith [1996] Smith, B. C. [1996]. On the Origin of Objects. MIT Press.
  • Sohl-Dickstein et al. [2015] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. [2015]. Deep unsupervised learning using nonequilibrium thermodynamics. In 32nd International Conference on Machine Learning, pp. 2256–2265. https://proceedings.mlr.press/v37/sohl-dickstein15.html.
  • Sowa [2000] Sowa, J. F. [2000]. Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole.
  • Sowa [2011] Sowa, J. F. [2011]. Future directions for semantic systems. In Tolk, A. and Jain, L. C. (eds.), Intelligence-Based Software Engineering, pp. 23–47. Springer-Verlag. http://www.jfsowa.com/pubs/futures.pdf.
  • Spall [2003] Spall, J. C. [2003]. Introduction to Stochastic Search and Optimization: Estimation, Simulation. Wiley.
  • Sparkes et al. [2010] Sparkes, A., et al. [2010]. Towards robot scientists for autonomous scientific discovery. Automated Experimentation, 2(1):1. http://dx.doi.org/10.1186/1759-4499-2-1.
  • Spencer et al. [2022] Spencer, A., et al. [2022]. The QALY at 50: One story many voices. Social Science and Medicine, 296:114653. http://dx.doi.org/https://doi.org/10.1016/j.socscimed.2021.114653.
  • Spiegelhalter et al. [1990] Spiegelhalter, D. J., Franklin, R. C. G., and Bull, K. [1990]. Assessment, criticism and improvement of imprecise subjective probabilities for a medical expert system. In Henrion, M., Shachter, R. D., Kanal, L., and Lemmer, J. (eds.), Uncertainty in Artificial Intelligence 5, pp. 285–294. North-Holland.
  • Spirtes et al. [2001] Spirtes, P., Glymour, C., and Scheines, R. [2001]. Causation, Prediction, and Search. MIT Press, 2nd edition.
  • Springer Nature [2022] Springer Nature [2022]. SN SciGraph: A linked open data platform for the scholarly domain. https://www.springernature.com/gp/researchers/scigraph.
  • Sreedharan et al. [2022] Sreedharan, S., Kulkarni, A., and Kambhampati, S. [2022]. Explainable Human–AI Interaction: A Planning Perspective. Morgan & Claypool. https://doi.org/10.2200/S01152ED1V01Y202111AIM050.
  • Srivastava et al. [2022] Srivastava, A. et al. [2022]. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. http://dx.doi.org/10.48550/arXiv.2206.04615.
  • Stanley et al. [2019] Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. [2019]. Designing neural networks through neuroevolution. Nature Machine Intelligence, 1(1):24–35. http://dx.doi.org/10.1038/s42256-018-0006-z.
  • Steck et al. [2021] Steck, H., et al. [2021]. Deep learning for recommender systems: A netflix case study. AI Magazine, 42(3):7–18. http://dx.doi.org/10.1609/aimag.v42i3.18140.
  • Sterling and Shapiro [1994] Sterling, L. S. and Shapiro, E. Y. [1994]. The Art of Prolog: Advanced Programming Techniques. MIT Press, 2nd edition.
  • Stevenson and Lindberg [2010] Stevenson, A. and Lindberg, C. A. (eds.) [2010]. The New Oxford American Dictionary. Oxford University Press.
  • Stillings et al. [1987] Stillings, N. A., et al. [1987]. Cognitive Science: An Introduction. MIT Press.
  • Stodden et al. [2016] Stodden, V., et al. [2016]. Enhancing reproducibility for computational methods. Science, 354. http://dx.doi.org/10.1126/science.aah6168.
  • Stone [2007] Stone, P. [2007]. Learning and multiagent reasoning for autonomous agents. In The 20th International Joint Conference on Artificial Intelligence (IJCAI-07), pp. 13–30. http://www.cs.utexas.edu/˜pstone/Papers/bib2html-links/IJCAI07-award.pdf.
  • Stone and Veloso [2000] Stone, P. and Veloso, M. [2000]. Multiagent systems: A survey from a machine learning perspective. Autonomous Robots, 8:345–383.
  • Such et al. [2017] Such, F. P., et al. [2017]. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. CoRR, abs/1712.06567. http://arxiv.org/abs/1712.06567.
  • Suchanek et al. [2007] Suchanek, F. M., Kasneci, G., and Weikum, G. [2007]. YAGO: A core of semantic knowledge – unifying WordNet and Wikipedia. In 16th International World Wide Web Conference (WWW 2007).
  • Sundermann et al. [2021] Sundermann, C., et al. [2021]. Applications of #SAT solvers on feature models. 15th International Working Conference on Variability Modelling of Software-Intensive Systems.
  • Sunstein [2018] Sunstein, C. R. [2018]. #Republic: Divided Democracy in the Age of Social Media. Princeton University Press. http://www.jstor.org/stable/j.ctv8xnhtd.
  • Sutton [1988] Sutton, R. S. [1988]. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–44. http://dx.doi.org/10.1007/BF00115009.
  • Sutton and Barto [2018] Sutton, R. S. and Barto, A. G. [2018]. Reinforcement Learning: An Introduction. MIT Press, 2nd edition.
  • Szepesvári [2010] Szepesvári, C. [2010]. Algorithms for Reinforcement Learning. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00268ED1V01Y201005AIM009.
  • Tarski [1956] Tarski, A. [1956]. Logic, Semantics, Metamathematics. Clarendon Press. Papers from 1923 to 1938 collected and translated by J. H. Woodger.
  • Tate [1977] Tate, A. [1977]. Generating project networks. In 5th International Joint Conference on Artificial Intelligence, pp. 888–893.
  • Tay et al. [2022] Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. [2022]. Efficient transformers: A survey. ACM Computing Surveys. http://dx.doi.org/10.1145/3530811.
  • Thompson [1933] Thompson, W. [1933]. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples”. Biometrika, 25(3/4):285–294.
  • Thrun [2006] Thrun, S. [2006]. Winning the DARPA grand challenge. In Innovative Applications of Artificial Intelligence Conference (IAAI-06), pp. 16–20.
  • Thrun et al. [2005] Thrun, S., Burgard, W., and Fox, D. [2005]. Probabilistic Robotics. MIT Press.
  • Torrance [1970] Torrance, G. [1970]. A generalized cost-effectiveness model for the evaluation of health programs. Technical report, Faculty of Business, McMaster University. http://hdl.handle.net/11375/5559.
  • Trouillon et al. [2016] Trouillon, T., et al. [2016]. Complex embeddings for simple link prediction. In ICML, volume abs/1606.06357. http://arxiv.org/abs/1606.06357.
  • Turing [1950] Turing, A. [1950]. Computing machinery and intelligence. Mind, 59:433–460. https://doi.org/10.1093/mind/LIX.236.433.
  • Tversky and Kahneman [1974] Tversky, A. and Kahneman, D. [1974]. Judgment under uncertainty: Heuristics and biases. Science, 185:1124–1131.
  • UNESCO [2022] UNESCO [2022]. Recommendation on the ethics of artificial intelligence. https://unesdoc.unesco.org/ark:/48223/pf0000381137.
  • United Nations [2015a] United Nations [2015a]. Transforming our world: The UN 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda.
  • United Nations [2015b] United Nations [2015b]. The UN sustainable development goals. https://sdgs.un.org/goals.
  • U.S. Government [2022] U.S. Government [2022]. GPS accuracy. https://www.gps.gov/systems/gps/performance/accuracy/.
  • Vallor [2021] Vallor, S. [2021]. Virtues in the digital age. In The Oxford Handbook of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.2.
  • van Beek and Chen [1999] van Beek, P. and Chen, X. [1999]. Cplan: A constraint programming approach to planning. In AAAI-99, pp. 585–590.
  • van de Meent et al. [2018] van de Meent, J.-W., Paige, B., Yang, H., and Wood, F. [2018]. An introduction to probabilistic programming. https://arxiv.org/abs/1809.10756.
  • Van den Broeck et al. [2021] Van den Broeck, G., Kersting, K., Natarajan, S., and Poole, D. (eds.) [2021]. Introduction to Lifted Inference. MIT Press.
  • van Diggelen and Enge [2015] van Diggelen, F. and Enge, P. [2015]. The world’s first GPS MOOC and worldwide laboratory using smartphones. In 28th International Technical Meeting of the Satellite Division of The Institute of Navigation.
  • van Emden and Kowalski [1976] van Emden, M. H. and Kowalski, R. A. [1976]. The semantics of predicate logic as a programming language. Journal ACM, 23(4):733–742.
  • Vaswani et al. [2017] Vaswani, A., et al. [2017]. Attention is all you need. In 31st Conference on Neural Information Processing Systems. https://arxiv.org/abs/1706.03762.
  • Veitch and D’Amour [2023] Veitch, V. and D’Amour, A. [2023]. Causality. In Murphy [2023], chapter 36. MIT Press.
  • Visser and Burkhard [2007] Visser, U. and Burkhard, H.-D. [2007]. Robocup: 10 years of achievements and challenges. AI Magazine, 28(2):115–130.
  • Viswanathan et al. [2011] Viswanathan, P., Little, J., Mackworth, A. K., and Mihailidis, A. [2011]. Navigation and obstacle avoidance help (NOAH) for older adults with cognitive impairment: A pilot study. In International ACM SIGACCESS Conference on Computers and Accessibility.
  • Vlassis [2007] Vlassis, N. [2007]. A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00091ED1V01Y200705AIM002.
  • Vrandečić and Krötzsch [2014] Vrandečić, D. and Krötzsch, M. [2014]. Wikidata: A free collaborative knowledgebase. Communications of the ACM, 57(10):78–85.
  • W3C OWL Working Group [2012] W3C OWL Working Group (ed.) [2012]. OWL 2 Web Ontology Language Document Overview. W3C Recommendation 11 December 2012, 2nd edition. http://www.w3.org/TR/owl2-overview/.
  • Wakker [2010] Wakker, P. P. [2010]. Prospect Theory: For Risk and Ambiguity. Cambridge University Press.
  • Waldinger [1977] Waldinger, R. [1977]. Achieving several goals simultaneously. In Elcock, E. and Michie, D. (eds.), Machine Intelligence 8: Machine Representations of Knowledge, pp. 94–136. Ellis Horwood.
  • Walsh [2007] Walsh, T. [2007]. Representing and reasoning with preferences. AI Magazine, 28(4):59–69.
  • Walter [1950] Walter, W. G. [1950]. An imitation of life. Scientific American, 182(5):42–45.
  • Walter [1951] Walter, W. G. [1951]. A machine that learns. Scientific American, 185(2):60–63.
  • Wang [1960] Wang, H. [1960]. Toward mechanical mathematics. IBM Journal of Research and Development, 4(1):2–22. http://dx.doi.org/doi:10.1147/rd.41.0002.
  • Warren and Pereira [1982] Warren, D. H. D. and Pereira, F. C. N. [1982]. An efficient easily adaptable system for interpreting natural language queries. Computational Linguistics, 8(3–4):110–122. http://portal.acm.org/citation.cfm?id=972944.
  • Watkins and Dayan [1992] Watkins, C. J. C. H. and Dayan, P. [1992]. Q-learning. Machine Learning, 8(3):279–292. http://dx.doi.org/10.1007/BF00992698.
  • Weidinger et al. [2021] Weidinger, L., et al. [2021]. Ethical and social risks of harm from language models. http://dx.doi.org/10.48550/arXiv.2112.04359.
  • Weizenbaum [1976] Weizenbaum, J. [1976]. Computer Power and Human Reason: From Judgment to Calculation. Freeman.
  • Weld [1994] Weld, D. S. [1994]. An introduction to least commitment planning. AI Magazine, 15(4):27–61.
  • Weld [1999] Weld, D. S. [1999]. Recent advances in AI planning. AI Magazine, 20(2).
  • Wellman [2011] Wellman, M. P. [2011]. Trading Agents. Morgan & Claypool. http://dx.doi.org/doi:10.2200/S00370ED1V01Y201107AIM012.
  • Whitehead and Russell [1925, 1927] Whitehead, A. N. and Russell, B. [1925, 1927]. Principia Mathematica. Cambridge University Press, 2nd edition.
  • Wikidata [2021] Wikidata [2021]. Q262802 – wikidata. https://www.wikidata.org/wiki/Q262802.
  • Wilkins [1988] Wilkins, D. E. [1988]. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan Kaufmann.
  • Wilkinson et al. [2016] Wilkinson, M. D., et al. [2016]. The fair guiding principles for scientific data management and stewardship. Scientific Data, 3(1):160018. http://dx.doi.org/10.1038/sdata.2016.18.
  • Winograd [1972] Winograd, T. [1972]. Understanding Natural Language. Academic Press.
  • Winograd [1990] Winograd, T. [1990]. Thinking machines: Can there be? Are we? In Partridge, D. and Wilks, Y. (eds.), The Foundations of Artificial Intelligence: A Sourcebook, pp. 167–189. Cambridge University Press.
  • Wolpert [1996] Wolpert, D. H. [1996]. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390. http://dx.doi.org/10.1162/neco.1996.8.7.1341.
  • Woods [2007] Woods, W. A. [2007]. Meaning and links. AI Magazine, 28(4):71–92.
  • Wooldridge [2009] Wooldridge, M. [2009]. An Introduction to MultiAgent Systems. Wiley.
  • World Economic Forum [2021] World Economic Forum [2021]. Responsible use of technology: The IBM case study. https://www.weforum.org/whitepapers/responsible-use-of-technology-the-ibm-case-study/.
  • Xu et al. [2019] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. [2019]. How powerful are graph neural networks? In ICLR.
  • Xu et al. [2008] Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. [2008]. SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565–606. https://www.aaai.org/Papers/JAIR/Vol32/JAIR-3214.pdf.
  • Yang [1997] Yang, Q. [1997]. Intelligent Planning: A Decomposition and Abstraction-Based Approach. Springer-Verlag.
  • Yang and Mackworth [2007] Yang, S. and Mackworth, A. K. [2007]. Hierarchical shortest pathfinding applied to route-planning for wheelchair users. In Canadian Conference on Artificial Intelligence, AI-2007.
  • Yannakakis and Togelius [2018] Yannakakis, G. N. and Togelius, J. [2018]. Artificial Intelligence and Games. Springer. http://gameaibook.org.
  • Zador et al. [2023] Zador, A., et al. [2023]. Catalyzing next-generation artificial intelligence through NeuroAI. Nature Communications, 14(1):1597. http://dx.doi.org/10.1038/s41467-023-37180-x.
  • Zhang et al. [2018] Zhang, B. H., Lemoine, B., and Mitchell, M. [2018]. Mitigating unwanted biases with adversarial learning. In 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340. http://dx.doi.org/10.1145/3278721.3278779.
  • Zhang et al. [2022a] Zhang, D., et al. [2022a]. The AI Index 2022 Annual Report. AI Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford University. https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report˙Master.pdf.
  • Zhang et al. [2022b] Zhang, H., et al. [2022b]. On the paradox of learning to reason from data. http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf.
  • Zhang [2004] Zhang, N. L. [2004]. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Research, 5(6):697–723.
  • Zhang and Poole [1994] Zhang, N. L. and Poole, D. [1994]. A simple approach to Bayesian network computations. In 10th Canadian Conference on Artificial Intelligence, pp. 171–178.
  • Zhang and Mackworth [1995] Zhang, Y. and Mackworth, A. K. [1995]. Constraint nets: A semantic model for hybrid dynamic systems. Theoretical Computer Science, 138:211–239.
  • Zilberstein [1996] Zilberstein, S. [1996]. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83.
  • Zimmer [2022] Zimmer, M. [2022]. A celebrated AI has learned a new trick: How to do chemistry. The Conversation. https://theconversation.com/a-celebrated-ai-has-learned-a-new-trick-how-to-do-chemistry-182031.
  • Zuboff [2019] Zuboff, S. [2019]. The Age of Surveillance Capitalism : The Fight for a Human Future at the New Frontier of Power. Profile Books.