Learning Objectives

At the end of the class you should be able to:
@ identify a supervised learning problem

@ characterize how the prediction is a function of the error
measure

@ avoid mixing the training and test sets
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Supervised Learning

Given:
@ a set of inputs features Xi,..., X,
@ a set of target features Yi,..., Yk

@ a set of training examples where the values for the input
features and the target features are given for each
example

@ a new example, where only the values for the input
features are given

predict the values for the target features for the new example.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 2



Supervised Learning

Given:
@ a set of inputs features Xi,..., X,
@ a set of target features Yi,..., Yk

@ a set of training examples where the values for the input
features and the target features are given for each
example

@ a new example, where only the values for the input
features are given

predict the values for the target features for the new example.
@ classification when the Y; are discrete

@ regression when the Y; are continuous
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Example Data Representations

A travel agent wants to predict the preferred length of a trip,
which can be from 1 to 6 days. (No input features).

Two representations of the same data:

— Y is the length of trip chosen.

— Each Y is an indicator variable that has value 1 if the
chosen length is i, and is 0 otherwise.

Example Y Example Y1 Yo Y3 Yy Y5 Yp
e 1 e 1 0 0 0 0 O
e 6 € 0o 0 0 0 0 1
e 6 e 0o 0 0 0 0 1
€4 2 € o 1 0 0 0 O
es 1 es 1 0 0 0 0 O

What is a prediction?
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Evaluating Predictions

Suppose we want to make a prediction of a value for a target
feature on example e:

@ 0. is the observed value of target feature on example e.

@ p. is the predicted value of target feature on example e.

@ The error of the prediction is a measure of how close p,
iS to Oe.

@ There are many possible errors that could be measured.

Sometimes p. can be a real number even though o, can only
have a few values.
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Measures of error

E is the set of examples, with single target feature. For e € E,
0. is observed value and p. is predicted value:

@ absolute error L;(E) = Z |0e — Ppe|

ecE
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Measures of error

E is the set of examples, with single target feature. For e € E,
0. is observed value and p. is predicted value:

@ absolute error L;(E) = Z |0e — Ppe|

ecE

o sum of squares error L5(E) = Z(oe — Pe)?

ecE
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Measures of error

E is the set of examples, with single target feature. For e € E,
0. is observed value and p. is predicted value:

@ absolute error L;(E) = Z |0e — Ppe|
ecE
o sum of squares error L5(E) = Z(oe — Pe)?
ecE
@ worst-case error: Lo (E) = max |0e — Ppe|
ec
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Measures of error

E is the set of examples, with single target feature. For e € E,
0. is observed value and p. is predicted value:

@ absolute error L;(E) = Z |0e — Ppe|

ecE

o sum of squares error L5(E) = Z(oe — Pe)?

ecE
@ worst-case error: Lo (E) = max |0e — Ppe|
ec

@ number wrong : Lo(E) = #{e : 0 # pe}
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Measures of error

E is the set of examples, with single target feature. For e € E,
0. is observed value and p. is predicted value:

@ absolute error L;(E) = Z |0e — Ppe|

ecE

o sum of squares error L5(E) = Z(oe — Pe)?
ecE
@ worst-case error: Lo (E) = max |0e — Ppe|
ec

@ number wrong : Lo(E) = #{e : 0 # pe}

@ A cost-based error takes into account costs of errors.
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Measures of error (cont.)

With binary feature: o, € {0, 1}:
@ likelihood of the data

H P (1 Oe)

ecE
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Measures of error (cont.)

With binary feature: o, € {0, 1}:
@ likelihood of the data

H P (1 Oe)

ecE

o log likelihood

> " (0clog pe + (1 — o) log(1 — pe))

ecE
is negative of number of bits to encode the data given a
code based on pe.
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Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2 items

n items can be distinguished using log, n bits
Can we do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
= 120000 i
2 4 8 8 4
The string aacabbda has code
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
= 120000 i
2 4 8 8 4
The string aacabbda has code 00110010101110.

The code 0111110010100 represents string
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a):§,P(b):Z,P(c):§,P(d):§
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) x 14+ P(b) x 2+ P(c) x 3+ P(d) x 3
= 120000 i
2 4 8 8 4
The string aacabbda has code 00110010101110.

The code 0111110010100 represents string adcabba
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Information Content

e To identify x, we need — log, P(x) bits.

@ Give a distribution over a set, to a identify a member, the
expected number of bits

> " —P(x) x log, P(x).

is the information content or entropy of the
distribution.

@ The expected number of bits it takes to describe a
distribution given evidence e:

I(e) =) —P(x|e) x log, P(x[e).

X
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Information Gain

Given a test that can distinguish the cases where « is true
from the cases where « is false, the information gain from
this test is:

I(true) — (P(a) x I(a) + P(—a) x I(—a)).

@ [(true) is the expected number of bits needed before the
test

o P(a) x I(a) + P(—a) x I(—«) is the expected number of
bits after the test.
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Linear Predictions
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Linear Predictions
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Point Estimates

To make a single prediction for feature Y, with examples E.

@ The prediction that minimizes the sum of squares error on
Eis
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on

E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is

the median value of Y.
@ The prediction that minimizes the number wrong on E is
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is
the mode of Y.
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is

the mode of Y.
@ The prediction that minimizes the worst-case error on E

is
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is

the mode of Y.
@ The prediction that minimizes the worst-case error on E

is (maximum + minimum) /2
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Point Estimates

To make a single prediction for feature Y, with examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is
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Point Estimates

To make a single prediction for feature Y, with examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical probability.
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Point Estimates

To make a single prediction for feature Y, with examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical probability.

@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 31



Point Estimates

To make a single prediction for feature Y, with examples E.

@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.

@ The prediction that minimizes the absolute error on E is
the median value of Y.

@ The prediction that minimizes the number wrong on E is
the mode of Y.

@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2

@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical probability.

@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is the empirical probability.
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Point Estimates

To make a single prediction for feature Y, with examples E.
@ The prediction that minimizes the sum of squares error on
E is the mean (average) value of Y.
@ The prediction that minimizes the absolute error on E is
the median value of Y.
@ The prediction that minimizes the number wrong on E is
the mode of Y.
@ The prediction that minimizes the worst-case error on E
is (maximum + minimum) /2
@ When Y has values {0,1}, the prediction that maximizes
the likelihood on E is the empirical probability.
@ When Y has values {0, 1}, the prediction that minimizes
the entropy on E is the empirical probability.
But that doesn't mean that these predictions minimize the
error for future predictions....
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Training and Test Sets

To evaluate how well a learner will work on future predictions,
we divide the examples into:

@ training examples that are used to train the learner

@ test examples that are used to evaluate the learner

...these must be kept separate.

@©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 34



Learning Probabilities

@ Empirical probabilities do not make good predictors of
test set when evaluated by likelihood or entropy.

o Why?
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Learning Probabilities

@ Empirical probabilities do not make good predictors of
test set when evaluated by likelihood or entropy.

@ Why? A probability of zero means “impossible” and has
infinite cost if there is one true case in test set.
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Learning Probabilities

Empirical probabilities do not make good predictors of
test set when evaluated by likelihood or entropy.

Why? A probability of zero means “impossible” and has
infinite cost if there is one true case in test set.

Solution: (Laplace smoothing) add (non-negative)
pseudo-counts to the data.

Suppose n; is the number of examples with X = v;, and
¢; is the pseudo-count:

G +n;
2 it 4 i

Pseudo-counts convey prior knowledge. Consider: “how
much more would | believe v; if | had seen one example
with v; true than if | has seen no examples with v; true?”

P(X: V,'):
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