
Learning Objectives

At the end of the class you should be able to:

show an example of decision-tree learning

explain how to avoid overfitting in decision-tree learning

derive the update for gradient descent for linear
classification

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 1

Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

decision trees

linear (and non-linear) classifiers

Bayesian classifiers

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 2

Learning Decision Trees

Representation is a decision tree.

Bias is towards simple decision trees.

Search through the space of decision trees, from simple
decision trees to more complex ones.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 3

Decision trees

A (binary) decision tree (for a particular output feature) is a
tree where:

Each nonleaf node is labeled with an test (function of
input features).

The arcs out of a node labeled with values for the test.

The leaves of the tree are labeled with point prediction of
the output feature.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 4

Example Decision Trees

knownunknown

follow_upnew

shortlong

Length

Thread

Author

skips

reads

skips reads

shortlong

Length

reads with
probability 0.82

skips

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 5

Equivalent Logic Program

skips ← long .

reads ← short ∧ new .

reads ← short ∧ follow up ∧ known.

skips ← short ∧ follow up ∧ unknown.

or with negation as failure:

reads ← short ∧ new .

reads ← short ∧ ∼new ∧ known.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 6

Issues in decision-tree learning

Given some training examples, which decision tree should
be generated?

A decision tree can represent any discrete function of the
input features.

You need a bias. Example, prefer the smallest tree.
Least depth? Fewest nodes? Which trees are the best
predictors of unseen data?

How should you go about building a decision tree? The
space of decision trees is too big for systematic search for
the smallest decision tree.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 7

Searching for a Good Decision Tree

The input is a set of input features, a target feature and,
a set of training examples.

Either:
I Stop and return the a value for the target feature or a

distribution over target feature values
I Choose a test (e.g. an input feature) to split on.

For each value of the test, build a subtree for those
examples with this value for the test.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 8

Choices in implementing the algorithm

When to stop:

I no more input features
I all examples are classified the same
I too few examples to make an informative split

Which test to split on isn’t defined. Often we use
myopic split: which single split gives smallest error.

With multi-valued features, the text can be can to split
on all values or split values into half. More complex tests
are possible.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 9

Choices in implementing the algorithm

When to stop:
I no more input features
I all examples are classified the same
I too few examples to make an informative split

Which test to split on isn’t defined. Often we use
myopic split: which single split gives smallest error.

With multi-valued features, the text can be can to split
on all values or split values into half. More complex tests
are possible.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 10

Choices in implementing the algorithm

When to stop:
I no more input features
I all examples are classified the same
I too few examples to make an informative split

Which test to split on isn’t defined. Often we use
myopic split: which single split gives smallest error.

With multi-valued features, the text can be can to split
on all values or split values into half. More complex tests
are possible.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 11

Example: possible splits

length

long short

skips 7
reads 0

skips 2
reads 9

skips 9
reads 9

thread

new old

skips 3
reads 7

skips 6
reads 2

skips 9
reads 9

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 12

Handling Overfitting

This algorithm can overfit the data.
This occurs when noise and correlations in the training
set that are not reflected in the data as a whole.

To handle overfitting:
I restrict the splitting, and split only when the split is

useful.
I allow unrestricted splitting and prune the resulting tree

where it makes unwarranted distinctions.
I learn multiple trees and average them.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 13

Linear Function

A linear function of features X1, . . . ,Xn is a function of the
form:

f w (X1, . . . ,Xn) = w0 + w1X1 + · · ·+ wnXn

We invent a new feature X0 which has value 1, to make it not
a special case.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 14

Linear Regression

Linear regression is where the predicted output for feature Y
is a linear function of the input features.

Ŷ w (e) = w0 + w1X1(e) + · · ·+ wnXn(e)

=
n∑

i=0

wiXi(e) ,

The sum of squares error on examples E for output Y is:

ErrorE (w) =
∑
e∈E

(Y (e)− Ŷ w (e))2

=
∑
e∈E

(
Y (e)−

n∑
i=0

wiXi(e)

)2

.

Goal: find weights that minimize ErrorE (w).

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 15

Linear Regression

Linear regression is where the predicted output for feature Y
is a linear function of the input features.

Ŷ w (e) = w0 + w1X1(e) + · · ·+ wnXn(e)

=
n∑

i=0

wiXi(e) ,

The sum of squares error on examples E for output Y is:

ErrorE (w) =
∑
e∈E

(Y (e)− Ŷ w (e))2

=
∑
e∈E

(
Y (e)−

n∑
i=0

wiXi(e)

)2

.

Goal: find weights that minimize ErrorE (w).
c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 16

Finding weights that minimize ErrorE (w)

Find the minimum analytically.
Effective when it can be done (e.g., for linear regression).

Find the minimum iteratively.
Works for larger classes of problems.
Gradient descent:

wi ← wi − η
∂ErrorE (w)

∂wi

η is the gradient descent step size, the learning rate.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 17

Finding weights that minimize ErrorE (w)

Find the minimum analytically.
Effective when it can be done (e.g., for linear regression).

Find the minimum iteratively.
Works for larger classes of problems.
Gradient descent:

wi ← wi − η
∂ErrorE (w)

∂wi

η is the gradient descent step size, the learning rate.

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 18

Gradient Descent for Linear Regression

1: procedure LinearLearner(X ,Y ,E , η)
2: Inputs
3: X : set of input features, X = {X1, . . . ,Xn}
4: Y : output feature
5: E : set of examples from which to learn
6: η: learning rate

7: initialize w0, . . . ,wn randomly
8: repeat
9: for each example e in E do

10: δ ← Y (e)− Ŷ w (e)
11: for each i ∈ [0, n] do
12: wi ← wi + ηδXi(e)

13: until some stopping criterion is true
14: return w0, . . . ,wn

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 19

Linear Classifier

Assume we are doing binary classification, with classes
{0, 1} (e.g., using indicator functions).

There is no point in making a prediction of less than 0 or
greater than 1.

A squashed linear function is of the form:

f w (X1, . . . ,Xn) = f (w0 + w1X1 + · · ·+ wnXn)

where f is an activation function .

A simple activation function is the step function:

f (x) =

{
1 if x ≥ 0
0 if x < 0

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 20

Linear Classifier

Assume we are doing binary classification, with classes
{0, 1} (e.g., using indicator functions).

There is no point in making a prediction of less than 0 or
greater than 1.

A squashed linear function is of the form:

f w (X1, . . . ,Xn) = f (w0 + w1X1 + · · ·+ wnXn)

where f is an activation function .

A simple activation function is the step function:

f (x) =

{
1 if x ≥ 0
0 if x < 0

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 21

Gradient Descent for Linear Classifiers

If the activation is differentiable, we can use gradient descent
to update the weights. The sum of squares error is:

ErrorE (w) =
∑
e∈E

(
Y (e)− f (

∑
i

wiXi(e))

)2

.

The partial derivative with respect to weight wi for example e
is:

∂ErrorE (w)

∂wi
= −2δf ′(

∑
i

wiXi(e))Xi(e) .

where δ = Y (e)− Ŷ w (e)
Thus, each example e updates each weight wi by

wi ← wi + ηδf ′(
∑
i

wiXi(e))Xi(e) .

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 22

Gradient Descent for Linear Classifiers

If the activation is differentiable, we can use gradient descent
to update the weights. The sum of squares error is:

ErrorE (w) =
∑
e∈E

(
Y (e)− f (

∑
i

wiXi(e))

)2

.

The partial derivative with respect to weight wi for example e
is:

∂ErrorE (w)

∂wi
= −2δf ′(

∑
i

wiXi(e))Xi(e) .

where δ = Y (e)− Ŷ w (e)
Thus, each example e updates each weight wi by

wi ← wi + ηδf ′(
∑
i

wiXi(e))Xi(e) .

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 23

The sigmoid or logistic activation function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

f (x) =
1

1 + e−x

f ′(x) = f (x)(1− f (x))

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 24

The sigmoid or logistic activation function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

f (x) =
1

1 + e−x

f ′(x) = f (x)(1− f (x))

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 25

Gradient Descent for Logistic Regression

1: procedure LinearLearner(X ,Y ,E , η)
2: Inputs
3: X : set of input features, X = {X1, . . . ,Xn}
4: Y : output feature
5: E : set of examples from which to learn
6: η: learning rate

7: initialize w0, . . . ,wn randomly
8: repeat
9: for each example e in E do

10: p ← f (
∑

i wiXi(e))
11: δ ← Y (e)− p
12: for each i ∈ [0, n] do

13: wi ← wi + ηδp(1− p)Xi(e)

14: until some stopping criterion is true
15: return w0, . . . ,wn

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 26

Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads δ error
Predicted Obs

e1 0 0 0 f (0.4) = 0.6 0

-0.6 0.36

e2 1 1 0 f (−1.2) = 0.23 0

-0.23 0.053

e3 1 0 1 f (0.9) = 0.71 1

0.29 0.084

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 27

Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads δ error
Predicted Obs

e1 0 0 0 f (0.4) = 0.6 0 -0.6 0.36
e2 1 1 0 f (−1.2) = 0.23 0 -0.23 0.053
e3 1 0 1 f (0.9) = 0.71 1 0.29 0.084

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 28

Linearly Separable

A classification is linearly separable if there is a
hyperplane where the classification is true on one side of
the hyperplane and false on the other side.

For the sigmoid function, the hyperplane is when:
w0 + w1X1(e) + · · ·+ wnXn(e) = 0.

If the data are linearly separable, the error can be made
arbitrarily small.

+ +

+-
0 1

0

1
or

- +

--
0 1

0

1
and

+ -

+-
0 1

0

1
xor

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 29

Bayesian classifiers

Idea: if you knew the classification you could predict the
values of features.

P(Class|X1 . . .Xn) ∝ P(X1, . . . ,Xn|Class)P(Class)

Naive Bayesian classifier: Xi are independent of each
other given the class.
Requires: P(Class) and P(Xi |Class) for each Xi .

P(Class|X1 . . .Xn) ∝
∏
i

P(Xi |Class)P(Class)

UserAction

Author Thread Length Where Read

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 30

Learning Probabilities

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40
t f t t 2 10
t f t t 3 50
...

...
...

...
...

...

−→

C

X1 X2 X3 X4

P(C=vi) =

∑
t|=C=vi

Count(t)∑
t Count(t)

P(Xk = vj |C=vi) =

∑
t|=C=vi∧Xk=vj

Count(t)∑
t|=C=vi

Count(t)

...perhaps including pseudo-counts

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 31

Learning Probabilities

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40
t f t t 2 10
t f t t 3 50
...

...
...

...
...

...

−→

C

X1 X2 X3 X4

P(C=vi) =

∑
t|=C=vi

Count(t)∑
t Count(t)

P(Xk = vj |C=vi) =

∑
t|=C=vi∧Xk=vj

Count(t)∑
t|=C=vi

Count(t)

...perhaps including pseudo-counts
c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 32

Help System

H

"able" "absent" "add" "zoom". . .

The domain of H is the set of all help pages.
The observations are the words in the query.

What probabilities are needed?
What pseudo-counts and counts are used?
What data can be used to learn from?

c©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.3, Page 33

