
There is a real world with real structure. The pro-
gram of mind has been trained on vast interaction with
this world and so contains code that reflects the struc-
ture of the world and knows how to exploit it. This code
contains representations of real objects in the world and
represents the interactions of real objects. The code is
mostly modular. . . , with modules for dealing with differ-
ent kinds of objects and modules generalizing across many
kinds of objects. . . .

You exploit the structure of the world to make decisions
and take actions. Where you draw the line on categories,
what constitutes a single object or a single class of objects
for you, is determined by the program of your mind, which
does the classification. This classification is not random
but reflects a compact description of the world, and in
particular a description useful for exploiting the structure
of the world.

Eric B. Baum, What is Thought? [2004]
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Lecture 17.3

Topics:

mapping between relational probabilistic models and their
groundings

plate notation

build a relational probabilistic model for a domain
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Relational Probabilistic Models

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Relational Probabilistic Models

Often we want random variables for combinations of individual in
populations

build a probabilistic model before knowing the individuals

learn the model for one set of individuals

apply the model to new individuals

allow complex relationships between individuals
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Crowdsourcing

Consider crowdsourcing (such as Amazon mechanical Turk) to pay
people to answer yes/no questions to determine what is true.

User Question Answer

u1 q1 Yes
u2 q1 No
u1 q2 No
u3 q2 No
u2 q2 Yes
u3 q3 No
. . . . . . . . .

How do you determine what is true from the responses?

Truth: Majority vote? > 90%?

How confident should you be in the predictions?

How do you determine who to pay?

What about users guessing at random just to get paid?
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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with
the same averages. Why should we make different predictions?

How can we make predictions when the values of properties
Student and Course are individuals?
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From Relations to Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.1 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”
See relnProbModels in AIPython.org
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Plate Notation

C

S

Grade(S,C)

Int(S) Diff(C)

S is a logical variable representing students
C is a logical variable representing courses
the set of all individuals of some type is called a population

Int(S), Grade(S ,C ), Diff (C ) are parametrized random
variables
for every student s, there is a random variable Int(s)
for every course c , there is a random variable Diff (c)
for every student s and course c pair there is a random
variable Grade(s, c)
all instances share the same structure and parameters
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Plate Notation for Learning Parameters

T

H(T)

!

H(t1)

!

H(t2) H(tn)...

tosses t1, t2…tn

T is a logical variable representing tosses of a thumb tack

H(t) is a Boolean variable that is true if toss t is heads.

θ is a random variable representing the probability of heads.

Domain of θ is {0.0, 0.01, 0.02, . . . , 0.99, 1.0} or interval [0, 1].
P(H(ti )=true|θ=p) =

p

H(ti ) is independent of H(tj) (for i ̸= j) given θ: i.i.d. or
independent and identically distributed.
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Crowdsourcing

Q

U

Ans(U,Q)

Reliable(U) Truth(Q)

Q is a logical variable representing questions

U is a logical variable representing users who answer questions

Ans(U,Q) is the answer (yes/no) given by U to question Q

Truth(Q) represents whether Q is true or false

Reliable(U) represents how reliable U is (or maybe is just
guessing). The more reliable the more likely the answer
corresponds to the truth.

It is unlikely that unreliable users will keep guessing the same
answer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 10 / 34



Crowdsourcing

Q

U

Ans(U,Q)

Reliable(U) Truth(Q)

Q is a logical variable representing questions

U is a logical variable representing users who answer questions

Ans(U,Q) is the answer (yes/no) given by U to question Q

Truth(Q) represents whether Q is true or false

Reliable(U) represents how reliable U is (or maybe is just
guessing). The more reliable the more likely the answer
corresponds to the truth.

It is unlikely that unreliable users will keep guessing the same
answer.
© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 10 / 34



Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X
logical variables can be drawn as plates.

Each logical variable is typed with a population. X : person

A population is a set of individuals.

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: an instance
of each random variable for each assignment of an individual
to a logical variable. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common ancestors
and descendants).
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Plates and the Grounding: Interaction of arcs and plates

X

A

B
X

A

B

X
A

B

A1

B1

A2

B2

An

Bn

…

B1

A

B2 Bn

…

A1 A2

B

An

…

(a) (b) (c)

The population of logical variable X is {x1, . . . , xn}
Random variable A(xi ) is written as Ai

What independencies hold in (a), (b), (c)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 12 / 34



Plates and the Grounding: Interaction of arcs and plates

X

A

B
X

A

B

X
A

B

A1

B1

A2

B2

An

Bn

…

B1

A

B2 Bn

…

A1 A2

B

An

…

(a) (b) (c)

The population of logical variable X is {x1, . . . , xn}
Random variable A(xi ) is written as Ai

What independencies hold in (a),

(b), (c)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 12 / 34



Plates and the Grounding: Interaction of arcs and plates

X

A

B
X

A

B

X
A

B

A1

B1

A2

B2

An

Bn

…

B1

A

B2 Bn

…

A1 A2

B

An

…

(a) (b) (c)

The population of logical variable X is {x1, . . . , xn}
Random variable A(xi ) is written as Ai

What independencies hold in (a), (b),

(c)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 12 / 34



Plates and the Grounding: Interaction of arcs and plates

X

A

B
X

A

B

X
A

B

A1

B1

A2

B2

An

Bn

…

B1

A

B2 Bn

…

A1 A2

B

An

…

(a) (b) (c)

The population of logical variable X is {x1, . . . , xn}
Random variable A(xi ) is written as Ai

What independencies hold in (a), (b), (c)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 12 / 34



Parametrized Belief Networks / Plates (2)

X

r(X)

Individuals:
i1, . . . , ik
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q

t
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Creating Dependencies

Instances of plates are independent, except by common parents or
children.

X
r(X)

q

r(i1) r(ik)....
q

Common
Parents

X
r(X)

q

r(i1) r(ik)....
q

Observed
Children
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Overlapping plates

Person

likes

young
genre

Movie

l(s,r)

y(s)

y(c)

y(k) l(c,r)

l(k,r)

l(s,t)

l(c,t)

l(k,t)

g(r) g(t)

Relations: likes(P,M), young(P), genre(M)
likes is Boolean, young is Boolean,
genre has domain {action, romance, family}

Three people: sam (s), chris (c), kim (k)
Two movies: rango (r), terminator (t)
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Overlapping plates

Person

likes

young
genre

Movie

Relations: likes(P,M), young(P), genre(M)

likes is Boolean, young is Boolean, genre has domain
{action, romance, family}
If there are 1000 people and 100 movies,
Grounding contains:

100,000 likes + 1,000 age + 100 genre
= 101,100

random variables

How many numbers need to be specified to define the
probabilities required?
1 for young , 2 for genre, 6 for likes = 9 total.
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Representing Conditional Probabilities

P(likes(P,M)|young(P), genre(M)) — “parameter sharing”
— individuals share probability parameters. Also called
“weight sharing” or “convolutional”

P(happy(X )|friend(X ,Y ),mean(Y )) — needs aggregation —
happy(a) depends on an unbounded number of parents.

There can be more structure about the individuals. . .
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Exercise #1

For the relational probabilistic model:

X

cb

a

Suppose the the population of X is n and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers need to be specified for a tabular
representation of the conditional probabilities?
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Exercise #2

For the relational probabilistic model:

X

bc

a

d

Suppose the the population of X is n and all variables are Boolean.

(a) Which of the conditional probabilities cannot be defined as a
table?

(b) How many random variables are in the grounding?

(c) How many numbers need to be specified for a tabular
representation of those conditional probabilities that can be
defined using a table? (Assume the aggregator is an “or”
which uses no numbers).
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Exercise #3

For the relational probabilistic model:

Movie

Person

saw
urban

alt

profit

Suppose the population of Person is n and the population of
Movie is m, and all variables are Boolean.

(a) How many random variables are in the grounding?

(b) How many numbers are required to specify the conditional
probabilities? (Assume an “sum” is the aggregator and the
rest are defined by tables).
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Hierarchical Bayesian Model

Example: SXH is true when patient X is sick in hospital H.
We want to learn the probability of Sick for each hospital.
Where do the prior probabilities for the hospitals come from?

φH

α1

X H

SXH

α2

φ1 φ2 φk

α1

...

α2

S11 S12

...

S21 S22

...

S1k

...

(a) (b)
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Aggregation

When an arc comes out of a plate, the child has an
unbounded number of parents −→ aggregation.

The other cases are the same as in a belief network and can
use: table, rules, decision tree, logistic regression, neural
network....

Aggregation requires a method to represent the conditional
probability given an unbounded number of parents in a finite
way.
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Standard Aggregators

A probabilistic logic program, such as
b ← (∃X a(X )∧ n(X ))∨ n0 uses “noisy or” as the aggregator.

The model can be specified using weighted logical formulae,
extended to first-order logic: “relational logistic regression”.

Standard database aggregators such as average, sum or max
of some values of the parents (common in convolutional graph
neural networks).

Latent Dirichlet allocation when population of a plate is the
domain of the child (e.g., topic of a word).
The value of A(v) can be used to compute P(B=v):

P(B=v) =
exp(A(v))∑
v ′ exp(A(v ′))

E.g., B is a topic, A is the topic of a particular word instance.
Each word instance is paying attention to a topic.
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Example: Aggregation

Y

X

Shot(X,Y)

Has_motive(X,Y)

Is_shot(Y)

Has_opportunity(X,Y)

Has_gun(X)

is shot(Y )↔∃X shot(X ,Y ))

∨ shot by no one(Y )

noisy-or

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 24 / 34



Example: Aggregation

Y

X

Shot(X,Y)

Has_motive(X,Y)

Is_shot(Y)

Has_opportunity(X,Y)

Has_gun(X)

is shot(Y )↔∃X shot(X ,Y ))

∨ shot by no one(Y )

noisy-or

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 24 / 34



Example: Aggregation

Y

X

Shot(X,Y)

Has_motive(X,Y)

Is_shot(Y)

Has_opportunity(X,Y)

Has_gun(X)

is shot(Y )↔∃X shot(X ,Y ))

∨ shot by no one(Y )

noisy-or

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 17.3 24 / 34



Example: Language Models

Unigram Model:

D
I

W(D,I)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (D, I ) is the I ’th word in document D. The domain of W
is the set of all words.
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Example: Language Models

Topic Mixture:

D
I

W(D,I)T(D)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

W (d , i) is the i ’th word in document d . The domain of W is
the set of all words.

T (d) is the topic of document d . The domain of T is the set
of all topics.
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Example: Language Models

Mixture of topics, bag of words (unigram):

D
T I

W(D,I)S(T,D)

D is the set of all documents

I is the set of indexes of words in the document. I ranges
from 1 to the number of words in the document.

T is the set of all topics

W (d , i) is the i ’th word in document d . The domain of W is
the set of all words.

S(t, d) is true if topic t is a subject of document d . S is
Boolean.
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Example: Latent Dirichlet Allocation

D
T I

to(D,I)pr(D,T) w(D,I)

D is the document

I is the index of a word in the document. I ranges from 1 to
the number of words in document D.

T is the topic

w(d , i) is the i-th word in document d . The domain of w is
the set of all words.

to(d , i) is the topic of the i-th word of document d . The
domain of to is the set of all topics.

pr(d , t) is is the proportion of document d that is about topic
t. The domain of pr is the reals.
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t. The domain of pr is the reals.
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Example: Latent Dirichlet Allocation

D
T I

to(D,I)pr(D,T) w(D,I)

P(to(D, I ) | pr(D,T )) requires aggregation over T

domain of P(to(D, I ) is T .
could use (assuming pr(D,T ) ≥ 0 and

∑
T pr(D,T ) = 1 for

each D):

P(to(D, I )=t) = pr(D, t)

alternative (assuming pr(D,T ) is real):

P(to(D, I )=t | pr(D,T )) =
exp(pr(D, t))∑
t′ exp(pr(D, t ′))

Each word is paying attention to a topic.
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Example: Language Models

Mixture of topics, set of words:

D
T W

A(W,D)S(T,D)

D is the set of all documents

W is the set of all words

T is the set of all topics

Boolean A(w , d) is true if word w appears in document d

Boolean S(t, d) is true if topic t is a subject of document d .

Rephil (Google) has 900,000 topics, 12,000,000 “words”,
350,000,000 links.
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Creating Dependencies: Exploit Domain Structure

....
X

r(X)
r(i1) r(i4)

s(X)

r(i2) r(i3)

s(i1) s(i2) s(i3)
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Predicting students errors

x1 x0
+ y1 y0

z2 z1 z0

X0X1

Y0Y1

Z0Z1Z2

C1C2

Knows_Carry Knows_Add

What if there were multiple digits, problems, students, times?

How can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

xj · · · x1 x0
+ yj · · · y1 y0

zj · · · z1 z0

X(D,P)

Y(D,P) Z(D,P,S,T)

Carry(D,P,S,T)

Knows_carry(S,T) Knows_add(S,T)

D,P

S,T

Parametrized Random Variables:

x(D,P), y(D,P),
knows carry(S ,T ), knows add(S ,T ), c(D,P,S ,T ),
z(D,P,S ,T )

Logical variables: digit D, problem P, student S , time T .

Random variables: There is a random variable for each
assignment of a value to D and a value to P in x(D,P). . . .
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What is now required is to give the greatest possible development
to mathematical logic, to allow to the full the importance of
relations, and then to found upon this secure basis a new
philosophical logic, which may hope to borrow some of the
exactitude and certainty of its mathematical foundation. If this can
be successfully accomplished, there is every reason to hope that
the near future will be as great an epoch in pure philosophy as the
immediate past has been in the principles of mathematics. Great
triumphs inspire great hopes; and pure thought may achieve,
within our generation, such results as will place our time, in this
respect, on a level with the greatest age of Greece.

– Bertrand Russell, Mysticism and Logic and Other Essays [1917]
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