Embedding-based models build embeddings for entities and relations to predict tuples.

Simplest case: relations between two entities. E.g., predicting the rating for a person on a movie (collaborative filtering).

Knowledge graphs: predict subject-verb-object triples.
Learning a relation between two entities

A relation between users and items (movies). From Movielens:

<table>
<thead>
<tr>
<th>User</th>
<th>Item</th>
<th>Rating</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>242</td>
<td>3</td>
<td>881250949</td>
</tr>
<tr>
<td>186</td>
<td>302</td>
<td>3</td>
<td>891717742</td>
</tr>
<tr>
<td>22</td>
<td>377</td>
<td>1</td>
<td>878887116</td>
</tr>
<tr>
<td>244</td>
<td>51</td>
<td>2</td>
<td>880606923</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Netflix: 500K users, 17k movies, 100M ratings (withdrawn).
- Movielens: multiple datasets from 100K to 25M ratings, with links to IMDB, plus some user properties

\[\hat{r}_{ui} = \text{predicted rating of user } u \text{ on item } i \]

\[Es = \text{set of } (u, i, r) \text{ tuples in the training set (ignoring timestamp)} \]

Minimize sum squares error:

\[\sum_{(u, i, r) \in Es} (\hat{r}_{ui} - r)^2 \]

© 2023 D. L. Poole and A. K. Mackworth
Learning Relational Models with Latent Variables

- Predict same for all ratings: $\hat{r}_{ui} = \mu$
- Adjust for each user and item: $\hat{r}_{ui} = \mu + b_1[u] + b_2[i]$

 Question: $b_1[u]$ could be negative even though all ratings of u are higher than average. How?

- Question: How can this be used to personalize recommendations?

- One latent feature: f_i for each item and g_u for each user

\[
\hat{r}_{ui} = \mu + b_1[u] + b_2[i] + f_1[u] \times f_2[i]
\]

- Positive $f_1[u]$ forms a soft clustering of users.
- Positive $f_2[i]$ forms a soft clustering of items.
- How do these clusterings interact?
- What about negative values?
What is being learned? (Single latent feature)

for each \((u, i, r)\): \(r\) is plotted at point \((f_1[u], f_2[i])\).

```
aipython: relnCollFilt.py
What pattern would you expect?
```
\(k \) latent features (Python notation):

\[
\hat{r}_{ui} = \mu + b_1[u] + b_2[i] + \sum_f E_1[u][f] \times E_2[i][f]
\]

- \(E_1[u] \) is the user embedding, a vector of numbers.
- \(E_2[i] \) is the item embedding, a vector of numbers.
- Regularize parameters except \(\mu \).
L2 regularization, minimize:

\[
\left(\sum_{(u, i, r) \in Es} (\hat{r}_{ui} - r)^2 \right) + \lambda \sum_{\text{parameter } p} p^2
\]
Minimize:
\[
\sum_{(u,i,r) \in E_s} \left(\mu + b_1[u] + b_2[i] + \sum_k E_1[u][f] \ast E_2[i][f] - r \right)^2
\]
\[
+ \lambda \left(\sum_i (b_1[u]^2 + \sum_f E_1[u][f]^2) + \sum_u (b_2[i]^2 + \sum_f E_2[i][f]^2) \right)
\]
where \(\lambda \) is a regularization parameter.

To find minimizing parameters:
- Gradient descent
- Iterative least squares: fix one of \(E_1 \) and \(E_2 \); the problem is ridge regression in the other.
\(\mu := \) average rating

assign \(E_1[u][f], E_2[i][f] \) randomly and assign \(b_1[i], b_2[u] \) arbitrarily

repeat:
 for each \((u, i, r) \in Es:\)
 \(e := \mu + b_1[i] + b_2[u] + \sum_k E_1[u][f] \ast E_2[i][f] - r \)
 \(b_1[i] := b_1[i] - \eta \ast e \)
 \(b_2[u] := b_2[u] - \eta \ast e \)
 for each feature \(f:\)
 \(E_1[u][f] := E_1[u][f] - \eta \ast e \ast E_2[i][f] \)
 \(E_2[i][f] := E_2[i][f] - \eta \ast e \ast E_1[u][f] \)
 for each item \(i:\)
 \(b_1[i] := b_1[i] - \eta \ast \lambda \ast b_1[i] \)
 for each feature \(f:\)
 \(E_1[u][f] := E_1[u][f] - \eta \ast \lambda \ast E_1[u][f] \)
 for each user \(u:\)
 \(b_2[u] := b_2[u] - \eta \ast \lambda \ast b_2[u] \)
 for each feature \(k:\)
 \(E_2[i][f] := E_2[i][f] - \eta \ast \lambda \ast E_2[i][f] \)
Variations

- What is you want to predict Boolean \(rating > 3 \)?
 - Use sigmoid.
 - What should we minimize?
 - How does the algorithm change?

- What if we want to predict \(rated \), where \(rated(u, i) \) is true if \((u, i, r) \in Es \) for some \(r \)?
 - There are no negative examples!
 - Use \(k \) random examples for each positive example!
 but the average probability is \(1/k \), which is not derived from the data.
A knowledge graph is defined in terms of triples of the form (s, r, o), with subject s, relation (verb) r, and object o.

The extension of matrix factorization to triples is polyadic decomposition:

$$
\hat{p}((s, r, o)) = \text{sigmoid}(\mu + b_1[s] + b_2[r] + b_3[o] + \sum_f E_1[s][f] * E_2[r][f] * E_3[o][f])
$$

- a global bias μ
- two biases for each entity e: $b_1[e]$ used when e is in the first position and $b_3[e]$, for when e in third position
- a bias for each relation r, namely $b_2[r]$
- matrixes E_1 and E_3
 - $E_1[e]$ is subject embedding for entity e → latent properties
 - $E_3[e]$, is object embedding entity e
- matrix E_2, where $E_2[r]$ is relation embedding for relation r.

All embeddings $E_1[e]$, $E_2[r]$ and $E_3[e]$ are the same length.
To optimize log loss with L_2 regularization:

- same as previous algorithm with a different predictor and more parameters to tune and regularize.
- Requires negative examples, but knowledge graphs don’t have negative examples.
- Regularize μ or provide made-up negative examples.
- But, not all relations have same number of negative examples, eg. “married-to” vs “has-streamed”.
Improving Polyadic Decomposition

- Suppose triples are of the form \((u, \text{likes}, m)\) and \((m, \text{directed by}, d)\).
 How can we represent “Sam likes movies directed by Bong Joon-ho”?
The subject and object embeddings for movies are independent of each other, so this cannot be represented or learned.

- Solution: also represent \((m, \text{likes}^{-1}, u)\) and \((d, \text{directed by}^{-1}, m)\).

- Polyadic decomposition with inverses:

 \[
 \hat{p}(h, r, t) = \frac{1}{2}(\hat{pd}(h, r, t) + \hat{pd}(t, r^{-1}, h))
 \]

 where \(\hat{pd}\) is the prediction from the polyadic decomposition.
The polyadic decomposition is fully expressive: it can represent (with error less than any ϵ), any relation.

Initially assume subject and object embeddings are non-negative and bounded.

Each embedding position in the subject/object embedding forms a soft clustering of entities.

For each embedding position, a relation with a high value ($\gg 0$) in that position, the entities in the subject soft cluster are related to the entities in the object soft cluster. (The product is only high when all three are high).

A relation with a value $\ll 0$ in a position forms exceptions.

For possibly negative subject and object embeddings: product of even number of negative values is positive product of odd number of negative values is negative

The addition lets these values be combined.
What does polyadic decomposition learn?

- The polyadic decomposition makes predictions by clustering entities in different ways.
- It learns about each entity; embeddings are used to predict interactions.
- It does not learn general knowledge that can be applied to other populations.