- Embedding-based models build embeddings for entities and relations to predict tuples.
- Simplest case: relations between two entities.
 E.g., predicting the rating for a person on a movie (collaborative filtering).
- Knowledge graphs: predict subject-verb-object triples.

< 🗆 .

Learning a relation between two entities

A relation between users and items (movies). From Movielens:

User	Item	Rating	Timestamp				
196	242	3	881250949				
186	302	3	891717742				
22	377	1	878887116				
244	51	2	880606923				

- Netflix: 500K users, 17k movies, 100M ratings (withdrawn).
- Movielens: multiple datasets from 100K to 25M ratings, with links to IMDB, plus some user properties
- $\widehat{r_{ui}}$ = predicted rating of user *u* on item *i*

Es = set of (u, i, r) tuples in the training set (ignoring timestamp)Minimize sum squares error:

$$\sum_{(u,i,r)\in Es} (\widehat{r_{ui}} - r)^2$$

Learning Relational Models with Latent Variables

- Predict same for all ratings: $\widehat{\textbf{r}_{ui}}=\mu$
- Adjust for each user and item: î_{ui} = µ + b₁[u] + b₂[i]
 Question: b₁[u] could be negative even though all ratings of u are higher that average. How?
- Question: How can this be used to personalize recommendations?
- One latent feature: f_i for each item and g_u for each user

$$\widehat{r_{ui}} = \mu + b_1[u] + b_2[i] + f_1[u] * f_2[i]$$

Positive f₁[u] forms a soft clustering of users.
 Positive f₂[i] forms a soft clustering of items.
 How do these clusterings interact?
 What about negative values?

< 🗆 I

What is being learned? (Single latent feature)

for each (u, i, r): r is plotted at point $(f_1[u], f_2[i])$.

	1.0	1	3		4	4		32' 3	3 5	5	43	5		5	35	5
			-		2	~		-						-		
		2	4		3	34 34	4	21	3 4	5	442 444	5		5	44	4
	0.5	4	4		2	38	5	34 8	3 4	5	- 歩5	3		3	35	5
	0.5	3	4		2	4	4	38 3	3 4	5	342	4		5	45	4
		5	뫜		5	48	4	32 4	1 4	5	545	5		5	55	5
		3	4		4	#	\$	34	3 4	5	413	#		\$	35	5
		4	4		4	34	5	34	3 4	- 5	305 545	4		5	34	4
sma	0.0	ŀ														+
.≝		5	9		3	54	5	44 5	5 4	5	545	4		5	34	5
		5	5		5	55	5	48 5	5 4	- 5	555	5		5	44	5
	-0.5	3	뫸		4	45	5	28 3	3 3	4	443	3		5	24	3
		4	5		4	55	5	34 3	3 4	5	545	4		3	24	5 -
		5	5			42	4	34 3	3 3	5	4 81	2		5	24	4
		4	3		4	41	4	32	3 4	4	285	4		4	12	3
		5	4		3	45	4	2	3 7	4	483	3		1	24	3
		ľ														1
	-1.0	İ.,	5		л	21	4	- 10			211	л			12	,1
		-		-0	5	24	+	<u> </u>			J	7	0.5		12.	*
				0				users					0.5			

aipython: relnCollFilt.py What pattern would you expect?

4/14

• *k* latent features (Python notation):

$$\widehat{r_{ui}} = \mu + b_1[u] + b_2[i] + \sum_f E_1[u][f] * E_2[i][f]$$

 $E_1[u]$ is the user embedding, a vector of numbers. $E_2[i]$ is the item embedding, a vector of numbers.

• Regularize parameters except μ .

• L2 regularization, minimize:

$$\left(\sum_{(u,i,r)\in Es} (\widehat{r_{ui}} - r)^2\right) + \lambda \sum_{parameter p} p^2$$

Image: Ima

Minimize:

$$\left(\sum_{(u,i,r)\in Es} (\mu + b_1[u] + b_2[i] + \sum_k E_1[u][f] * E_2[i][f] - r)^2\right) + \lambda \left(\sum_i (b_1[u]^2 + \sum_f E_1[u][f]^2) + \sum_u (b_2[i]^2 + \sum_f E_2[i][f]^2)\right)$$

where λ is a regularization parameter.

To find minimizing parameters:

- Gradient descent
- Iterative least squares: fix one of E_1 and E_2 ; the problem is ridge regression in the other.

< 🗆

 $\mu :=$ average rating assign $E_1[u][f]$, $E_2[i][f]$ randomly and assign $b_1[i]$, $b_2[u]$ arbitrarily **repeat:**

for each $(u, i, r) \in Es$: $e := \mu + b_1[i] + b_2[u] + \sum_{k} E_1[u][f] * E_2[i][f] - r$ $b_1[i] := b_1[i] - \eta * e$ $b_2[u] := b_2[u] - \eta * e$ for each feature f. $E_1[u][f] := E_1[u][f] - \eta * e * E_2[i][f]$ $E_{2}[i][f] := E_{2}[i][f] - \eta * e * E_{1}[u][f]$ for each item *i*: $b_1[i] := b_1[i] - \eta * \lambda * b_1[i]$ for each feature f: $E_1[u][f] := E_1[u][f] - \eta * \lambda * E_1[u][f]$ for each user u: $b_{2}[u] := b_{2}[u] - \eta * \lambda * b_{2}[u]$ for each feature k: $E_{2}[i][f] := E_{2}[i][f] - \eta * \lambda * E_{2}[i][f]$

- What is you want to predict Boolean rating > 3?
 - Use sigmoid.
 - What should we minimize?
 - How does the algorithm change?
- What if we want to predict *rated*, where *rated*(u, i) is true if (u, i, r) ∈ Es for some r?
 - There are no negative examples!
 - Use k random examples for each positve example! but the average probability is 1/k, which is not derived from the data.

< 🗆 .

Knowledge Graphs and Triples

- A knowledge graph is defined in term of triples of the form (s, r, o), with subject s, relation (verb) r, and object o
- The extension of matrix factorization to triples is polyadic decomposition:

$$\widehat{p}((s, r, o)) = sigmoid(\mu + b_1[s] + b_2[r] + b_3[o]$$
$$\sum_{f} E_1[s][f] * E_2[r][f] * E_3[o][f])$$

 \blacktriangleright a global bias μ

- two biases for each entity e: b₁[e] used when e is in the first position and b₃[e], for when e in third position
- a bias for each relation r, namely b₂[r]
- matrixes E_1 and E_3 $E_1[e]$ is subject embedding for entity $e \longrightarrow$ latent properties $E_3[e]$, is object embedding entity e

▶ matrix E_2 , where $E_2[r]$ is relation embedding for relation r. All embeddings $E_1[e]$, $E_2[r]$ and $E_3[e]$ are the same length.

10/14

- To optimize log loss with L2 regularization: same as previous algorithm with a different predictor and more parameters to tune and regularize.
- Requires negative examples, but knowledge graphs don't have negative examples.
- Regularize μ or provide made-up negative examples.
- But, not all relations have same number of negative examples, eg. "married-to" vs "has-streamed".

Improving Polyadic Decomposition

 Suppose triples are of the form (u, likes, m) and (m, directed_by, d).

How can we represent "Sam likes movies directed by Bong Joon-ho"?

The subject and object embeddings for movies are independent of each other, so this cannot be represented or learned.

- Solution: also represent (m, likes⁻¹, u) and (d, directed_by⁻¹, m).
- polyadic decomposition with inverses:

$$\widehat{p}(h,r,t) = \frac{1}{2}(\widehat{pd}(h,r,t) + \widehat{pd}(t,r^{-1},h))$$

where \widehat{pd} is the prediction from the polyadic decomposition.

Image: Ima

What does polyadic decomposition learn?

- The polyadic decomposition is fully expressive: it can represent (with error less than any ϵ), any relation.
- Initially assume subject and object embeddings are non-negative and bounded.
- Each embedding position in the subject/object embedding forms a soft clustering of entities.
- For each embedding position, a relation with a high value (≫ 0) in that position, the entities in the subject soft cluster are related to the entities in the object soft cluster. (The product is only high when all three are high).
- \bullet A relation with a value $\ll 0$ in a position forms exceptions.
- For possibly negative subject and object embeddings: product of even number of negative values is positive product of odd number of negative values is negative
- The addition lets these values be combined.

- The polyadic decomposition makes predictions by clustering entities in different ways.
- It learns about each entity; embeddings are used to predict interactions.
- It does not learn general knowledge that can be applied to other populations.