Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?
» Has the concept already been defined?
> |f already defined, what symbol has been used for it?
> If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/25

Knowledge Sharing

@ A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
» What sorts of individuals are being modeled

» The vocabulary for specifying individuals, relations and
properties

» The meaning or intention of the vocabulary
@ If more than one person is building a knowledge base, they
must be able to share the conceptualization.

@ An ontology is a specification of a conceptualization.

An ontology specifies the meanings of the symbols in an
information system.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2/25

Mapping from a conceptualization to a symbol

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 3/25

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

» a symbol defined by an ontology means the same thing across
web sites that obey the ontology.

» if someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

» Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4/25

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

@ How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

@ People can fundamentally disagree about an appropriate
structure.

o Different knowledge bases can use different ontologies.

@ To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

@ It has to be in user’s interests to use an ontology.

@ The computer doesn't understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5/25

Semantic Web Technologies

o XML the Extensible Markup Language provides generic
syntax.
(tag.../) or
(tag...)...(/tag).

@ IRl a Internationalized Resource Identifier is a name of an
individual (resource). This name can be shared. Often in the
form of a URL to ensure uniqueness.

@ RDF the Resource Description Framework is a language of
triples

@ OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6/25

Main Components of an Ontology

e Individuals the things / objects in the world (not usually
specified as part of the ontology)

@ Classes sets of individuals

@ Properties between individuals and their values

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 7/25

Individuals

@ Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

@ Unique names assumption (UNA): different names refer to
different individuals.

@ OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

@ Without the determining equality, we can’t count!
@ In OWL we can specify:
owl:Samelndividual(iy, i2)

owl:DifferentIndividuals(i, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another
owl:SubClassOf (house, building)
owl:SubClassOf (officeBuilding , building)

The most general class is owl: Thing.

Classes can be declared to be the same or to be disjoint:
owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9/25

Example Concepts in an Ontology

The following are some of the concepts in an ontology for
documents.
http://www.cs.und.edu/projects/plus/DAML/onts/
docmnt1.0.daml

homepage correspondence publication
letter periodical article

book email magazine
journal document communication
workshopPaper journalPaper discussion
newspaper PersonalHomepage speech

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml

A property is between an individual and a value.

A property has a domain and a range.
rdfs:domain(/ivesin, person)

rdfs:range(/ivesin, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn't an individual,
e.g., is a number or string.

@ There can also be property hierarchies:
owl:subPropertyOf(livesin, enclosure)

owl:subPropertyOf(principalResidence, livesin)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11/25

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

@ Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

@ We can also state the minimum and maximal cardinality of a
property.
owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12/25

Property and Class Restrictions

@ We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner C personN{x : 3h € house such that x owns h}

owl:subClassOf(homeOwner,person)
owl:subClassOf (homeOwner,

owl:ObjectSomeValuesFrom(owns, house))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 13/25

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}
owl:ObjectSomeValuesFrom(P, C) =

{x:3y € C such that x P y}
owl:ObjectMinCardinality(n, P, C) =

{x: #{ylxPy and y € C} > n}
owl:ObjectMaxCardinality(n, P, C) =

{x: #{ylxPy and y € C} < n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C
rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I
owl:FunctionalObjectProperty(P) = if xPy; and xPy» then y; = y»
owl:InverseFunctionalObjectProperty(P) =

if x1Py and xoPy then x; = xo
owl: TransitiveObjectProperty(P) = if xPy and yPz then xPz
owl:SymmetricObjectProperty = if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15/25

Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

@ The semantic web promises to allow two pieces of information
to be combined if

» they both adhere to an ontology
P these are the same ontology or there is a mapping between
them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 /25

Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberO0funits))
FunctionalObjectProperty (:numberOfunits)
ObjectPropertyDomain(:numberO0funits :ResidentialBuilding)
ObjectPropertyRange (:numberOfunits

ObjectOne0f (:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))
EquivalentClasses(:ApartmentBuilding
ObjectIntersectionOf (
:ResidentialBuilding
ObjectHasValue (:numberOfunits :moreThanTwo)
ObjectHasValue(:ownership :rental)))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 17 /25

Example: hotel ontology

Define the following:
@ Room
BathRoom
StandardRoom - what is rented as a room in a hotel
Suite
RoomOnly
Hotel
HasForRent
AllSuitesHotel
NoSuitesHotel
HasSuitesHotel

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

Top-Level Ontology

A top-level ontology
@ provides a definition of everything at a very abstract level.

@ provides a useful categorization on which to base other
ontologies.

o facilitates the integration of domain ontologies.

At the top is entity. OWL calls the top of the hierarchy thing.
Essentially, everything is an entity.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19/25

Concrete or abstract

@ Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

@ Mathematic objects and times are abstract.
E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20/25

Continuants vs Occurrents

@ A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

@ An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

o Continuants participate in occurrents.
@ a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

@ A person is a trajectory though space and time

@ At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21/25

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
@ An occurrent dependent on an entity is a process or an event.
@ A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
@ An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22/25

Some ontologies

@ https://schema.org

e Smomed CT:
https://www.snomed.org/five-step-briefing or
https://browser.ihtsdotools.org/

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23/25

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:

» Who collected each piece of data? What are their credentials?

» Who transcribed the information?

» What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

» What were the controls? What was manipulated, when?

» What sensors were used? What is their reliability and
operating range?

» What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 /25

FAIR data

FAIR principles for data:

@ Findable — the (meta)data uses unique persistent identifiers,
such as IRIs.

@ Accessible — the data is available using free and open
protocols, and the metadata is accessible even when the data
is not.

@ Interoperable — the vocabulary is defined using formal
knowledge representation languages (ontologies).

@ Reusable — the data uses rich metadata, including provenance,
and an appropriate open license, so that the community can
use the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/25

