Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.

@ Fields have their own terminology and division of the world.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.
@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.
@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?

» Has the concept already been defined?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?
» Has the concept already been defined?
> |f already defined, what symbol has been used for it?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?
» Has the concept already been defined?
> |f already defined, what symbol has been used for it?
> If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1/28

Knowledge Sharing

@ A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
» What sorts of individuals are being modeled
» The vocabulary for specifying individuals, relations and
properties
» The meaning or intention of the vocabulary

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2/28

Knowledge Sharing

@ A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
» What sorts of individuals are being modeled
» The vocabulary for specifying individuals, relations and
properties
» The meaning or intention of the vocabulary
@ If more than one person is building a knowledge base, they
must be able to share the conceptualization.
— challenge: inter-operability of separately designed
knowledge bases.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2/28

Knowledge Sharing

@ A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
» What sorts of individuals are being modeled
» The vocabulary for specifying individuals, relations and
properties
» The meaning or intention of the vocabulary
@ If more than one person is building a knowledge base, they
must be able to share the conceptualization.
— challenge: inter-operability of separately designed
knowledge bases.

@ An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2/28

Mapping from a conceptualization to a symbol

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 3/28

Semantic Web

@ Ontologies are published on the web in machine readable form.

© 2023 D. L. Poole and A. K. Mackworth ificial Intelligence 3e, Lecture 16.3 4/28

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4/28

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
» A symbol defined by an ontology means the same thing across
web sites that obey the ontology.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4/28

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

» A symbol defined by an ontology means the same thing across
web sites that obey the ontology.

» |f someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4/28

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

» A symbol defined by an ontology means the same thing across
web sites that obey the ontology.

» |f someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

» Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4/28

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5/28

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

@ How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

@ People can fundamentally disagree about an appropriate
structure.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5/28

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

@ How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

@ People can fundamentally disagree about an appropriate
structure.

o Different knowledge bases can use different ontologies.

@ To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

@ It has to be in user’s interests to use an ontology.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5/28

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

@ How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

@ People can fundamentally disagree about an appropriate
structure.

o Different knowledge bases can use different ontologies.

@ To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

@ It has to be in user’s interests to use an ontology.

@ The computer doesn't understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5/28

Semantic Web Technologies Revisited

@ RDF the Resource Description Framework is a language of
triples, including the property rdf:type and containers (bags,
lists, etc)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6/28

Semantic Web Technologies Revisited

@ RDF the Resource Description Framework is a language of
triples, including the property rdf:type and containers (bags,
lists, etc)

o RDF-S RDF Schema is RDF plus the class: rdfs:Class, and
properties: rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subProperty0lf, ...

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6/28

Semantic Web Technologies Revisited

@ RDF the Resource Description Framework is a language of
triples, including the property rdf:type and containers (bags,
lists, etc)

o RDF-S RDF Schema is RDF plus the class: rdfs:Class, and
properties: rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subProperty0lf, ...

@ Lots of alternative syntaxes: XML, Turtle, N-Triples, Json ...

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6/28

Semantic Web Technologies Revisited

@ RDF the Resource Description Framework is a language of
triples, including the property rdf:type and containers (bags,
lists, etc)

o RDF-S RDF Schema is RDF plus the class: rdfs:Class, and
properties: rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subProperty0lf, ...

@ Lots of alternative syntaxes: XML, Turtle, N-Triples, Json ...

@ OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6/28

Main Components of an Ontology

e Individuals the things / objects in the world (not usually
specified as part of the ontology)

@ Classes sets of individuals

@ Properties between individuals and their values

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 7/28

Individuals

@ Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Individuals

@ Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

e Unique names assumption (UNA): different names refer to
different individuals.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Individuals

@ Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

e Unique names assumption (UNA): different names refer to
different individuals.

@ OWL does not adopt the unique names assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Individuals

@ Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption.

The UNA is not an assumption you can universally make:
“Lewis Carroll”, “Charles Lutwidge Dodgson”, “the author of
Alice's Adventures in Wonderland” etc.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption.

The UNA is not an assumption you can universally make:
“Lewis Carroll”, “Charles Lutwidge Dodgson”, “the author of
Alice's Adventures in Wonderland” etc.

Without the determining equality, we can't count!

Joe's mother was in the room. Sam’s cousin was there.
Chris's football coach was there. How many people were in
the room?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).
Unique names assumption (UNA): different names refer to
different individuals.
OWL does not adopt the unique names assumption.
The UNA is not an assumption you can universally make:
“Lewis Carroll”, “Charles Lutwidge Dodgson”, “the author of
Alice's Adventures in Wonderland” etc.
Without the determining equality, we can't count!
Joe's mother was in the room. Sam’s cousin was there.
Chris's football coach was there. How many people were in
the room?
Using OWL:

(i1, 'owl:Samelndividual’, ip)

(1, "'owl:DifferentIndividuals’, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8/28

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9/28

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

@ One class can be a subclass of another
rdfs:SubClassOf (house, building)
rdfs:SubClassOf (officeBuilding , building)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9/28

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

@ One class can be a subclass of another
rdfs:SubClassOf (house, building)
rdfs:SubClassOf (officeBuilding , building)

@ The most general class is owl: Thing.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

@ One class can be a subclass of another
rdfs:SubClassOf (house, building)
rdfs:SubClassOf (officeBuilding , building)

@ The most general class is owl: Thing.
@ Classes can be declared to be the same or to be disjoint:
owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9/28

Classes

@ A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another
rdfs:SubClassOf (house, building)
rdfs:SubClassOf (officeBuilding , building)

The most general class is owl: Thing.

Classes can be declared to be the same or to be disjoint:
owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9/28

Example Concepts in an Ontology

The following are some of the concepts in an ontology for
documents.
http://www.cs.und.edu/projects/plus/DAML/onts/
docmnt1.0.daml

homepage correspondence publication
letter periodical article

book email magazine
journal document communication
workshopPaper journalPaper discussion
newspaper PersonalHomepage speech

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml

Properties

@ A property is between an individual and a value.

© 2023 D. L. Poole and A. K. Mackworth ificial Intelligence 3e, Lecture 16.3 11/28

Properties

@ A property is between an individual and a value.

@ A property has a domain and a range.

© 2023 D. L. Poole and A. K. Mackworth ificial Intelligence 3e, Lecture 16.3 11/28

@ A property is between an individual and a value.
@ A property has a domain and a range.
rdfs:domain(/ivesin, person)

rdfs:range(livesin, placeOfResidence)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

@ A property is between an individual and a value.

@ A property has a domain and a range.
rdfs:domain(/ivesin, person)
rdfs:range(livesin, placeOfResidence)

@ An ObjectProperty is a property whose range is an individual.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11/28

@ A property is between an individual and a value.
@ A property has a domain and a range.
rdfs:domain(/ivesin, person)
rdfs:range(livesin, placeOfResidence)
@ An ObjectProperty is a property whose range is an individual.

@ A DatatypeProperty is one whose range isn't an individual,
e.g., is a number or string.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11/28

A property is between an individual and a value.

A property has a domain and a range.
rdfs:domain(/ivesin, person)

rdfs:range(livesin, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:
rdfs:subPropertyOf(livesin, enclosure)

rdfs:subPropertyOf (principalResidence, livesin)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

Clicker Question

Suppose we are given the following triple as true:
years_eligibility ’rdfs:domain’ student.
sam years_eligibility 3).
Which is the following can we infer
A Sam is a student
B Sam could a student (but maybe isn't)
C All students have value 3 for years_eligibility

D We can infer nothing about whether Sam is a student

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12/28

Clicker Question

Suppose we are given the following triples as true:

years_eligibility ’rdfs:domain’ student.
years_eligibility ’rdfs:domain’ athlete.
sam years_eligibility 3.
Which is the following is true

A Sam is both a student and an athlete.

B Sam could be either student or an athlete.

C We can infer nothing about whether Sam is an athlete or a
student

D There are no student athletes.

E The facts are inconsistent, and couldn’t possible all be true

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 13/28

Clicker Question

RDF-schema provides a vocabulary for classes and properties.
RDF-schema has a syntax for domain and range of a property.
schema.org does not use rdfs:domain and rdfs:range. Why?

A

B

The scheme.org designers didn't know about it even though
they used other terminology from RDF-schema

The scheme.org designers didn't care about domains and
ranges because they just wanted to define a vocabulary.

schema.org does not define anything, and so does not need
domain and ranges

The scheme.org designers did not want the meaning
associated with RDF-schema's domain and range.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 /28

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15/28

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

@ Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15/28

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

@ Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15/28

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

@ Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

@ We can also state the minimum and maximal cardinality of a
property.
owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15/28

Property and Class Restrictions

@ We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 /28

Property and Class Restrictions

@ We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner C personN{x : 3h € house such that x owns h}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 /28

Property and Class Restrictions

@ We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner C personN{x : 3h € house such that x owns h}

owl:subClassOf(homeOwner,person)
owl:subClassOf (homeOwner,

owl:ObjectSomeValuesFrom(owns, house))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 /28

OWL Class Constructors

owl: Thing = all individuals

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 17 /28

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 17 /28

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals

owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals

owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals

owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals

owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals

owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}
owl:ObjectSomeValuesFrom(P, C) =

{x:3y € C such that x P y}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}
owl:ObjectSomeValuesFrom(P, C) =

{x:3y € C such that x P y}
owl:ObjectMinCardinality(n, P, C) =

{x: #{ylxPy and y € C} > n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}
owl:ObjectSomeValuesFrom(P, C) =

{x:3y € C such that x P y}
owl:ObjectMinCardinality(n, P, C) =

{x: #{ylxPy and y € C} > n}
owl:ObjectMaxCardinality(n, P, C) =

{x: #{ylxPy and y € C} < n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G

© 2023 D. L. Poole and A. K. Mackworth

Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C

Artificial Intelligence 3e, Lecture 16.3

© 2023 D. L. Poole and A. K. Mackworth

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C
rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G

owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G

owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G

owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C

rdfs:subClassOf (G, &) = G € G

owl:EquivalentClasses(C1, () = G = G

owl:DisjointClasses(C1, ;) = GG N G = {}

rdfs:domain(P, C) = if xPy then x € C

rdfs:range(P, C) = if xPy then y € C

rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I
owl:FunctionalObjectProperty(P) = if xPy; and xPy» then y; = y»

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C
rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I
owl:FunctionalObjectProperty(P) = if xPy; and xPy» then y; = y»
owl:InverseFunctionalObjectProperty(P) =

if x1Py and xoPy then x; = xo

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 /28

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C
rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I
owl:FunctionalObjectProperty(P) = if xPy; and xPy» then y; = y»
owl:InverseFunctionalObjectProperty(P) =

if x1Py and xoPy then x; = xo
owl: TransitiveObjectProperty(P) = if xPy and yPz then xPz

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18/28

OWL Predicates

rdf:type(/,C)=1€ C
rdfs:subClassOf (G, &) = G € G
owl:EquivalentClasses(C1, () = G = G
owl:DisjointClasses(C1, ;) = GG N G = {}
rdfs:domain(P, C) = if xPy then x € C
rdfs:range(P, C) = if xPy then y € C
rdfs:subPropertyOf(P1, P2) = xP1y implies xP,y
owl:EquivalentObjectProperties(P, P,) = xPyy if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P2) = xPyy if and only if yPyx
owl:Samelndividual(/, ..., I,) =VjVk I} = I
owl:Differentindividuals(/y, ..., I,) = VjVk j # k implies I; # I
owl:FunctionalObjectProperty(P) = if xPy; and xPy» then y; = y»
owl:InverseFunctionalObjectProperty(P) =

if x1Py and xoPy then x; = xo
owl: TransitiveObjectProperty(P) = if xPy and yPz then xPz
owl:SymmetricObjectProperty = if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18/28

Knowledge Sharing

@ One ontology typically imports and builds on other ontologies.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19/28

Knowledge Sharing

@ One ontology typically imports and builds on other ontologies.

@ OWL provides facilities for version control.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19/28

Knowledge Sharing

@ One ontology typically imports and builds on other ontologies.
@ OWL provides facilities for version control.

@ Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19/28

Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

@ The semantic web promises to allow two pieces of information
to be combined if

» they both adhere to an ontology
P these are the same ontology or there is a mapping between
them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19/28

Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20/28

Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberO0funits))
FunctionalObjectProperty (:numberOfunits)
ObjectPropertyDomain(:numberO0funits :ResidentialBuilding)
ObjectPropertyRange (:numberOfunits

ObjectOne0f (:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))
EquivalentClasses(:ApartmentBuilding
ObjectIntersectionOf (
:ResidentialBuilding
ObjectHasValue (:numberOfunits :moreThanTwo)
ObjectHasValue(:ownership :rental)))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20/28

Example: hotel ontology

Define the following:
@ Room
o BathRoom
@ StandardRoom - what is rented as a room in a hotel
@ Suite

@ RoomOnly

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21/28

Example: hotel ontology

Define the following:
@ Room
BathRoom
StandardRoom - what is rented as a room in a hotel
Suite
RoomOnly
Hotel
HasForRent
AllSuitesHotel
NoSuitesHotel
HasSuitesHotel

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

Top-Level Ontology

A top-level ontology
@ provides a definition of everything at a very abstract level.

@ provides a useful categorization on which to base other
ontologies.

o facilitates the integration of domain ontologies.

At the top is entity. OWL calls the top of the hierarchy thing.
Essentially, everything is an entity.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 /28

Concrete or abstract

@ Physical objects and events are concrete.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23/28

Concrete or abstract

@ Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23/28

Concrete or abstract

@ Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

@ Mathematic objects and times are abstract.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23/28

Concrete or abstract

@ Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

@ Mathematic objects and times are abstract.
E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23/28

Continuants vs Occurrents

@ A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

@ An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 /28

Continuants vs Occurrents

@ A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

@ An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

o Continuants participate in occurrents.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 /28

Continuants vs Occurrents

@ A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

@ An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

o Continuants participate in occurrents.

@ a person, a life, a finger, infancy: what is part of what?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 /28

Continuants vs Occurrents

@ A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

@ An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

o Continuants participate in occurrents.
@ a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

@ A person is a trajectory though space and time

@ At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 /28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.

@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.

@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.

@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone

@ An occurrent dependent on an entity is a process or an event.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
@ An occurrent dependent on an entity is a process or an event.
@ A process happens over time, has temporal parts, and depends
on a continuant.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
@ An occurrent dependent on an entity is a process or an event.
@ A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
@ An occurrent dependent on an entity is a process or an event.
@ A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
@ An event is something that happens at an instant, and is
often a process boundary.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Dependent or independent

@ An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
@ A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
@ An occurrent dependent on an entity is a process or an event.
@ A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
@ An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25/28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated
@ Provenance is typically recorded as metadata — data about the
data — including:
» Who collected each piece of data? What are their credentials?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated
@ Provenance is typically recorded as metadata — data about the
data — including:
» Who collected each piece of data? What are their credentials?
» Who transcribed the information?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:
» Who collected each piece of data? What are their credentials?
» Who transcribed the information?
» What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:

» Who collected each piece of data? What are their credentials?

» Who transcribed the information?

» What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

» What were the controls? What was manipulated, when?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:

» Who collected each piece of data? What are their credentials?

» Who transcribed the information?

» What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

» What were the controls? What was manipulated, when?

» What sensors were used? What is their reliability and
operating range?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

Provenance

@ The provenance of data or data lineage specifies where the
data came from and how it was manipulated

@ Provenance is typically recorded as metadata — data about the
data — including:

» Who collected each piece of data? What are their credentials?

» Who transcribed the information?

» What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

» What were the controls? What was manipulated, when?

» What sensors were used? What is their reliability and
operating range?

» What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 26 /28

FAIR data

FAIR principles for data:

@ Findable — the (meta)data uses unique persistent identifiers,
such as IRIs.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 27 /28

FAIR data

FAIR principles for data:
@ Findable — the (meta)data uses unique persistent identifiers,
such as IRIs.

@ Accessible — the data is available using free and open
protocols, and the metadata is accessible even when the data
is not.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 27 /28

FAIR data

FAIR principles for data:
@ Findable — the (meta)data uses unique persistent identifiers,
such as IRIs.

@ Accessible — the data is available using free and open
protocols, and the metadata is accessible even when the data
is not.

@ Interoperable — the vocabulary is defined using formal
knowledge representation languages (ontologies).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 27 /28

FAIR data

FAIR principles for data:

@ Findable — the (meta)data uses unique persistent identifiers,
such as IRIs.

@ Accessible — the data is available using free and open
protocols, and the metadata is accessible even when the data
is not.

@ Interoperable — the vocabulary is defined using formal
knowledge representation languages (ontologies).

@ Reusable — the data uses rich metadata, including provenance,
and an appropriate open license, so that the community can
use the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 27 /28

Ontologies in Science

@ https://schema.org

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 28 /28

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/
http://obofoundry.org
https://www.springernature.com/gp/open-research/open-data
https://www.springernature.com/gp/open-research/open-data

Ontologies in Science

@ https://schema.org

e SNOMED CT for medicine:
https://www.snomed.org/five-step-briefing or
https://browser.ihtsdotools.org/

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/
http://obofoundry.org
https://www.springernature.com/gp/open-research/open-data
https://www.springernature.com/gp/open-research/open-data

Ontologies in Science

@ https://schema.org

e SNOMED CT for medicine:
https://www.snomed.org/five-step-briefing or
https://browser.ihtsdotools.org/

@ http://obofoundry.org

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/
http://obofoundry.org
https://www.springernature.com/gp/open-research/open-data
https://www.springernature.com/gp/open-research/open-data

Ontologies in Science

@ https://schema.org

e SNOMED CT for medicine:
https://www.snomed.org/five-step-briefing or
https://browser.ihtsdotools.org/

@ http://obofoundry.org

@ https://www.springernature.com/gp/open-research/
open-data

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 28 /28

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/
http://obofoundry.org
https://www.springernature.com/gp/open-research/open-data
https://www.springernature.com/gp/open-research/open-data

