
Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:

▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?

▶ Given a concept in someone’s mind, what symbol to use?
▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?

▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?

▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 1 / 25



Knowledge Sharing

A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
▶ What sorts of individuals are being modeled
▶ The vocabulary for specifying individuals, relations and

properties
▶ The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2 / 25



Knowledge Sharing

A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
▶ What sorts of individuals are being modeled
▶ The vocabulary for specifying individuals, relations and

properties
▶ The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2 / 25



Knowledge Sharing

A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
▶ What sorts of individuals are being modeled
▶ The vocabulary for specifying individuals, relations and

properties
▶ The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 2 / 25



Mapping from a conceptualization to a symbol

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 3 / 25



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
▶ a symbol defined by an ontology means the same thing across

web sites that obey the ontology.
▶ if someone wants to refer to something not defined, they

publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4 / 25



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

▶ a symbol defined by an ontology means the same thing across
web sites that obey the ontology.

▶ if someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4 / 25



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
▶ a symbol defined by an ontology means the same thing across

web sites that obey the ontology.

▶ if someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4 / 25



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
▶ a symbol defined by an ontology means the same thing across

web sites that obey the ontology.
▶ if someone wants to refer to something not defined, they

publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4 / 25



Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
▶ a symbol defined by an ontology means the same thing across

web sites that obey the ontology.
▶ if someone wants to refer to something not defined, they

publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 4 / 25



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5 / 25



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5 / 25



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5 / 25



Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 5 / 25



Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
⟨tag . . . /⟩ or
⟨tag . . . ⟩ . . . ⟨/tag⟩.

IRI a Internationalized Resource Identifier is a name of an
individual (resource). This name can be shared. Often in the
form of a URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6 / 25



Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
⟨tag . . . /⟩ or
⟨tag . . . ⟩ . . . ⟨/tag⟩.
IRI a Internationalized Resource Identifier is a name of an
individual (resource). This name can be shared. Often in the
form of a URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6 / 25



Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
⟨tag . . . /⟩ or
⟨tag . . . ⟩ . . . ⟨/tag⟩.
IRI a Internationalized Resource Identifier is a name of an
individual (resource). This name can be shared. Often in the
form of a URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6 / 25



Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
⟨tag . . . /⟩ or
⟨tag . . . ⟩ . . . ⟨/tag⟩.
IRI a Internationalized Resource Identifier is a name of an
individual (resource). This name can be shared. Often in the
form of a URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 6 / 25



Main Components of an Ontology

Individuals the things / objects in the world (not usually
specified as part of the ontology)

Classes sets of individuals

Properties between individuals and their values

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 7 / 25



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8 / 25



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8 / 25



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8 / 25



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8 / 25



Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

OWL does not adopt the unique names assumption. The
UNA is not an assumption we can universally make: “The
Queen”, “Elizabeth Windsor”, etc.

Without the determining equality, we can’t count!

In OWL we can specify:

owl:SameIndividual(i1, i2)

owl:DifferentIndividuals(i1, i3)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 8 / 25



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9 / 25



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9 / 25



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9 / 25



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9 / 25



Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

owl:SubClassOf(house, building)

owl:SubClassOf(officeBuilding , building)

The most general class is owl:Thing.

Classes can be declared to be the same or to be disjoint:

owl:EquivalentClasses(house, singleFamilyDwelling)

owl:DisjointClasses(house, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 9 / 25



Example Concepts in an Ontology

The following are some of the concepts in an ontology for
documents.
http://www.cs.umd.edu/projects/plus/DAML/onts/

docmnt1.0.daml

homepage correspondence publication
letter periodical article
book email magazine
journal document communication
workshopPaper journalPaper discussion
newspaper PersonalHomepage speech

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 10 / 25

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml


Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

owl:subPropertyOf(livesIn, enclosure)

owl:subPropertyOf(principalResidence, livesIn)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 11 / 25



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12 / 25



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.

(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12 / 25



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12 / 25



Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 12 / 25



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 13 / 25



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 13 / 25



Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 13 / 25



OWL Class Constructors

owl:Thing ≡ all individuals

owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals

owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C

owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}

owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}

owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}

owl:ObjectSomeValuesFrom(P,C ) ≡
{x : ∃y ∈ C such that x P y}

owl:ObjectMinCardinality(n,P,C ) ≡
{x : #{y |xPy and y ∈ C} ≥ n}

owl:ObjectMaxCardinality(n,P,C ) ≡
{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}

owl:ObjectMinCardinality(n,P,C ) ≡
{x : #{y |xPy and y ∈ C} ≥ n}

owl:ObjectMaxCardinality(n,P,C ) ≡
{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}

owl:ObjectMaxCardinality(n,P,C ) ≡
{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C ) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I ) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C ) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C ) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C ) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 14 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C

rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}

rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C

rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C

rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y

owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y

owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y

owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x

owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik

owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik

owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2

owl:InverseFunctionalObjectProperty(P) ≡
if x1Py and x2Py then x1 = x2

owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2

owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz

owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



OWL Predicates

rdf:type(I ,C ) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C ) ≡ if xPy then x ∈ C
rdfs:range(P,C ) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 15 / 25



Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if
▶ they both adhere to an ontology
▶ these are the same ontology or there is a mapping between

them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 / 25



Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if
▶ they both adhere to an ontology
▶ these are the same ontology or there is a mapping between

them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 / 25



Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if
▶ they both adhere to an ontology
▶ these are the same ontology or there is a mapping between

them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 / 25



Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if
▶ they both adhere to an ontology
▶ these are the same ontology or there is a mapping between

them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 16 / 25



Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberOfunits))

FunctionalObjectProperty(:numberOfunits)

ObjectPropertyDomain(:numberOfunits :ResidentialBuilding)

ObjectPropertyRange(:numberOfunits

ObjectOneOf(:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))

EquivalentClasses(:ApartmentBuilding

ObjectIntersectionOf(

:ResidentialBuilding

ObjectHasValue(:numberOfunits :moreThanTwo)

ObjectHasValue(:ownership :rental)))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 17 / 25



Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

Declaration(ObjectProperty(:numberOfunits))

FunctionalObjectProperty(:numberOfunits)

ObjectPropertyDomain(:numberOfunits :ResidentialBuilding)

ObjectPropertyRange(:numberOfunits

ObjectOneOf(:two :one :moreThanTwo))

Declaration(Class(:ApartmentBuilding))

EquivalentClasses(:ApartmentBuilding

ObjectIntersectionOf(

:ResidentialBuilding

ObjectHasValue(:numberOfunits :moreThanTwo)

ObjectHasValue(:ownership :rental)))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 17 / 25



Example: hotel ontology

Define the following:

Room

BathRoom

StandardRoom - what is rented as a room in a hotel

Suite

RoomOnly

Hotel

HasForRent

AllSuitesHotel

NoSuitesHotel

HasSuitesHotel

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 / 25



Example: hotel ontology

Define the following:

Room

BathRoom

StandardRoom - what is rented as a room in a hotel

Suite

RoomOnly

Hotel

HasForRent

AllSuitesHotel

NoSuitesHotel

HasSuitesHotel

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 18 / 25



Top-Level Ontology

A top-level ontology

provides a definition of everything at a very abstract level.

provides a useful categorization on which to base other
ontologies.

facilitates the integration of domain ontologies.

At the top is entity. OWL calls the top of the hierarchy thing.
Essentially, everything is an entity.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 19 / 25



Concrete or abstract

Physical objects and events are concrete.

E.g., A person, a lecture, the sending of an email.

Mathematic objects and times are abstract.
E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20 / 25



Concrete or abstract

Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

Mathematic objects and times are abstract.
E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20 / 25



Concrete or abstract

Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

Mathematic objects and times are abstract.

E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20 / 25



Concrete or abstract

Physical objects and events are concrete.
E.g., A person, a lecture, the sending of an email.

Mathematic objects and times are abstract.
E.g., 17, set of all mammals on Earth, an email, a course

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 20 / 25



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

A person is a trajectory though space and time

At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21 / 25



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

A person is a trajectory though space and time

At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21 / 25



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

A person is a trajectory though space and time

At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21 / 25



Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.
Examples: person, a finger, a country, a smile, the smell of a
flower, an email, Newtonian mechanics

An occurrent has temporal parts.
Examples: a life, a holoday, smiling, the opening of a flower,
sending an email, earthquake

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

Alternative: a four-dimensional or perdurant view where objects
exist in the space-time.

A person is a trajectory though space and time

At any time, a person is a snapshot of the four-dimensional
trajectory.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 21 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.

For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.

A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.

For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone

An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.

A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.

For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.

An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.

For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Dependent or independent

An independent continuant is something that can exist by
itself or is part of another entity.
For example, a person, a face, a pen, a flower, a country, and
the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity
and is not a part of that entity.
For example, a smile, the ability to laugh, the inside of your
mouth, the ownership relation between a person and a phone
An occurrent dependent on an entity is a process or an event.
A process happens over time, has temporal parts, and depends
on a continuant.
For example: a holiday, writing an email, and a robot cleaning
the lab are all processes.
An event is something that happens at an instant, and is
often a process boundary.
For example, the end of a lecture, the first goal in the 2022
FIFA World Cup final.
© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 22 / 25



Some ontologies

https://schema.org

Smomed CT:
https://www.snomed.org/five-step-briefing or
https://browser.ihtsdotools.org/

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 23 / 25

https://schema.org
https://www.snomed.org/five-step-briefing
https://browser.ihtsdotools.org/


Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:

▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?

▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?

▶ What was the protocol used to collect the data? Was the data
chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?

▶ What sensors were used? What is their reliability and
operating range?

▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?

▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



Provenance

The provenance of data or data lineage specifies where the
data came from and how it was manipulated

Provenance is typically recorded as metadata – data about the
data – including:
▶ Who collected each piece of data? What are their credentials?
▶ Who transcribed the information?
▶ What was the protocol used to collect the data? Was the data

chosen at random or chosen because it was interesting or some
other reason?

▶ What were the controls? What was manipulated, when?
▶ What sensors were used? What is their reliability and

operating range?
▶ What processing has been done to the data?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 24 / 25



FAIR data

FAIR principles for data:

Findable – the (meta)data uses unique persistent identifiers,
such as IRIs.

Accessible – the data is available using free and open
protocols, and the metadata is accessible even when the data
is not.

Interoperable – the vocabulary is defined using formal
knowledge representation languages (ontologies).

Reusable – the data uses rich metadata, including provenance,
and an appropriate open license, so that the community can
use the data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 16.3 25 / 25


