Complete Knowledge Assumption

@ Often you want to assume that your knowledge is complete.

@ Example: assume that a database of what students are
enrolled in a course is complete. We don’t want to have to
state all negative enrolment facts!

@ The definite clause language is monotonic: adding clauses
can't invalidate a previous conclusion.
@ Under the complete knowledge assumption, the system is

non-monotonic: adding clauses can invalidate a previous
conclusion.
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Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

@ Suppose interpretation | = (D, ¢, ).

@ t; and t are ground terms then t; = ty is true in
interpretation / if t; and t, denote the same individual.
That is, t1 = t if ¢(t1) is the same as ¢(t2).

@ t; # tp when t; and t, denote different individuals.

@ Example:

D = {g><’ ﬁ? %}

#(phone) = B, ¢(pencil) = >, ¢(telephone) = T
What equalities and inequalities hold?

phone = telephone, phone = phone, pencil = pencil,
telephone = telephone

pencil # phone, pencil # telephone

@ Equality does not mean similarity!
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Properties of Equality

Equality is:
@ Reflexive: X = X
@ Symmetric: if X = Y then Y =X
@ Transitive: if X =Y and Y =Z then X =27

For each n-ary function symbol f

f(Xey.o oy Xn)=1Ff(Ye,...,Yn)if Xy =Yrand .-+ and X, = Y,
For each n-ary predicate symbol p

p(X1,..., X)) if p(Y1,...,Ys)and X; = Yy and --- and X, = Y,,.
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Unique Names Assumption

@ Suppose the only clauses for enrolled are
enrolled(sam, cs222)
enrolled(chris, cs222)

enrolled(sam, cs873)

To conclude —enrolled(chris, cs873), what do we need to
assume?

» All other enrolled facts are false
» Inequalities:

sam # chris \ cs873 # ¢s222

@ The unique names assumption (UNA) is the assumption that
distinct ground terms denote different individuals.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.3 4/17



Completion of a knowledge base: propositional case

@ Suppose the rules for atom a are
a < b1.

a < bp,.
equivalently a < by V...V by,.

@ Under the Complete Knowledge Assumption, if a is true, one
of the b; must be true:

a— by V...Vb,.
@ Thus, the clauses for a mean
a<biV...Vb,
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Clark Normal Form

The Clark normal form of the clause
p(t‘l, ey tk) +— B.

is the clause
p(Vl,...,Vk)%le...Ein Vi=tA...ANVy=tNB.

where
@ V4,...,V\ are k variables that did not appear in the original
clause
o Wih,..., W, are the original variables in the clause.

@ When the clause is an atomic clause, B is true.
e Often can be simplified by replacing IW V = W A p(W)
with P(V).

6/17
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Clark normal form

For the clauses
student(mary).
student(sam).
student(X) < undergrad(X).
the Clark normal form is
student(V) <~ V = mary.
student(V) < V = sam.
student(V') < 3X V = X A undergrad(X).
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Clark's Completion

Suppose all of the clauses for p are put into Clark normal form,
with the same set of introduced variables, giving

p(Vi,..., Vi) < Bi.

p(Va,..., Vk) < By

which is equivalent to
p(Vi,..., V)« B1 V...V By

Clark’'s completion of predicate p is the equivalence
VYV o Ve p(Va,. .., Vi) <> B V...V B,

If there are no clauses for p, the completion results in

V\/l .. .VVk p(\/l, ey Vk) < false

Clark’s completion of a knowledge base consists of the completion
of every predicate symbol along the unique names assumption.
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Completion example

p<qgAn~r.
p < s.
g < ~s.
r < ~t.

S < w.
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Completion Example

Consider the recursive definition:
passed_each([], St, MinPass).
passed_each([C|R], St, MinPass) «+
passed(St, C, MinPass) A
passed_each(R, St, MinPass).
In Clark normal form, this can be written as
passed_each(L,S, M) < L =].
passed_each(L,S, M) «
3C 3R L = [C|R] A passed(S, C, M) A passed_each(R, S, M).

Here we renamed the variables as appropriate. Thus, Clark's
completion of passed_each is

VL VS VM passed_each(L,S,M) <> L =[] Vv
3C 3R L = [C|R] A passed(S, C, M) A passed_each(R,S, M).
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Clark's Completion of a KB

@ Clark’s completion of a knowledge base consists of the
completion of every predicate.

@ The completion of an n-ary predicate p with no clauses is
p(Va,..., Vy) < false.

@ You can interpret negations in the body of clauses.
~a means a is false under the complete knowledge
assumption. ~a is replaced by —a in the completion.
This is negation as failure.
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Defining empty _course

Given database of:
e course(C) that is true if C is a course
e enrolled(S, C) that is true if student S is enrolled in course C.

Define empty_course(C) that is true if there are no students
enrolled in course C.

e Using negation as failure, empty _course(C) can be defined by
empty_course(C) < course(C) A ~has_enrollment(C).
has_enrollment(C) < enrolled(S, C).

@ The completion of this is:
VC empty_course(C) <= course(C) A —has_enrollment(C).
VC has_enrollment(C) <= 3S enrolled(S, C).
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Bottom-up negation as failure interpreter

C:=1{h

repeat
either
select r € KB such that
ris “h< b1 A ... A by"
b; € C for all i, and
hé¢ C;
C:=Cu{h}
or

select h such that for every rule “h < by A ... A bp" € KB
either for some b;, ~b; € C
or some bj =~gand g€ C
C:=CuU{~h}
until no more selections are possible
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Negation as failure example

p<qgAn~r.
p < s.
g < ~s.
r < ~t.

S < w.
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Top-Down negation as failure proof procedure

@ If the proof for a fails, you can conclude ~a.

@ Failure can be defined recursively:
Suppose you have rules for atom a:

a<—b1

a<+ by
If each body b; fails, a fails.
@ A body fails if one of the conjuncts in the body fails.
@ Note that you need finite failure. Example p < p.
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Floundering

p(X) < ~q(X) A r(X).
q(a).

(b).
r(d).
ask p(X).

Q

@ What is the answer to the query?
@ How can a top-down proof procedure find the answer?

@ Delay the subgoal until it is bound enough.
Sometimes it never gets bound enough — “floundering’.
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Problematic Cases

r(a)
ask p(X).
@ What is the answer?
@ What does delaying do?

@ How can this be implemented?
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