
Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

A substitution is a finite set of the form {V1/t1, . . . ,Vn/tn},
where each Vi is a distinct variable and each ti is a term.

The application of a substitution σ = {V1/t1, . . . ,Vn/tn} to
an atom or clause e, written eσ, is the instance of e with
every occurrence of Vi replaced by ti .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 1 / 20



Application Examples

The following are substitutions:
σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

The following shows some applications:
p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 2 / 20



Unifiers

Substitution σ is a unifier of e1 and e2 if e1σ = e2σ.

Substitution σ is a most general unifier (mgu) of e1 and e2 if
▶ σ is a unifier of e1 and e2; and
▶ if substitution σ′ also unifies e1 and e2, then eσ′ is an instance

of eσ for all atoms e.

If two atoms have a unifier, they have a most general unifier.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 3 / 20



Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e):

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {Y /b,D/e}
σ3 = {X/A,Y /b,Z/C ,D/e,W /a}
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ5 = {X/a,Y /b,Z/c,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

Which are most general unifiers?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 4 / 20



Unification Example

p(A, b,C ,D) and p(X ,Y ,Z , e) have as unifiers:
σ1 = {X/A,Y /b,Z/C ,D/e}
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}
σ3 = {X/A,Y /b,Z/C ,D/e,W /a}

The first three are most general unifiers.
The following substitutions are not unifiers:

σ2 = {Y /b,D/e}
σ5 = {X/a,Y /b,Z/c ,D/e}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 5 / 20



1: procedure unify(t1, t2) ▷ Returns mgu of t1 and t2 or ⊥.
2: E ← {t1 = t2} ▷ Set of equality statements
3: S := {} ▷ Substitution
4: while E ̸= {} do
5: select and remove x = y from E
6: if y is not identical to x then
7: if x is a variable then
8: replace x with y in E and S
9: S ← {x/y} ∪ S

10: else if y is a variable then
11: replace y with x in E and S
12: S ← {y/x} ∪ S
13: else if x is p(x1, . . . , xn) and y is p(y1, . . . , yn) then
14: E ← E ∪ {x1 = y1, . . . , xn = yn}
15: else
16: return ⊥ ▷ t1 and t2 do not unify

17: return S ▷ S is mgu of t1 and t2

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 6 / 20



Logical Consequence

Atom g is a logical consequence of KB if and only if:

g is an instance of a fact in KB, or

there is an instance of a rule

g ← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 7 / 20



Aside: Debugging false conclusions

To debug answer g that is false in the intended interpretation:

If g is a fact in KB, this fact is wrong.

Otherwise, suppose g was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.
▶ If each bi is true in the intended interpretation, this clause is

false in the intended interpretation.
▶ If some bi is false in the intended interpretation, debug bi .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 8 / 20



Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ⊢ g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ⊢ g implies KB |= g .

A proof procedure is complete if KB |= g implies KB ⊢ g .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 9 / 20



Bottom-up proof procedure

KB ⊢ g if there is g ′ added to C in this procedure where g = g ′θ:

C := {};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in KB such that
there is a substitution θ such that
for all i , there exists b′i ∈ C and θ′i where biθ = b′iθ

′
i and

there is no h′ ∈ C and θ′ such that h′θ′ = hθ
C := C ∪ {hθ}

until no more clauses can be selected.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 10 / 20



Example

live(Y )← connected to(Y ,Z ) ∧ live(Z ). live(outside).

connected to(w6,w5). connected to(w5, outside).

C = {live(outside),
connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 11 / 20



Soundness of bottom-up proof procedure

If KB ⊢ g then KB |= g .

Suppose there is a g such that KB ⊢ g and KB ̸|= g .

Then there must be a first atom added to C that has an
instance that isn’t true in every model of KB. Call it h.

Suppose h isn’t true in model I of KB.

There must be an instance of clause in KB of form

h′ ← b1 ∧ . . . ∧ bm

where h = h′θ and biθ is an instance of an element of C .
▶ Each biθ is true in I .
▶ h is false in I .
▶ So an instance of this clause is false in I .
▶ Therefore I isn’t a model of KB.
▶ Contradiction.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 12 / 20



Fixed Point

The C generated by the bottom-up algorithm is called a fixed
point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent a constant if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 13 / 20



Completeness

If KB |= g then KB ⊢ g .

Suppose KB |= g . Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ⊢ g .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 14 / 20



Top-down Proof procedure

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am,

where t1, . . . , tk are terms and a1, . . . , am are atoms.

The SLD resolution of this generalized answer clause on ai
with the clause

a← b1 ∧ . . . ∧ bp,

where ai and a have most general unifier θ, is

(yes(t1, . . . , tk)←
a1∧ . . .∧ai−1 ∧ b1∧ . . .∧bp ∧ ai+1∧ . . .∧am)θ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 15 / 20



Top-down Proof Procedure

To solve query ?B with variables V1, . . . ,Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk)← B
while ac is not an answer do

Suppose ac is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am
select atom ai in the body of ac
choose clause a← b1 ∧ . . . ∧ bp in KB
Rename all variables in a← b1 ∧ . . . ∧ bp
Let θ be the most general unifier of ai and a.

Fail if they don’t unify
Set ac to (yes(t1, . . . , tk)← a1 ∧ . . . ∧ ai−1∧

b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)θ
end while.

Answer is V1 = t1, . . . ,Vk = tk
where ac is yes(t1, . . . , tk)←

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 16 / 20



Example

live(Y )← connected to(Y ,Z ) ∧ live(Z ). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A)← live(A).

yes(A)← connected to(A,Z1) ∧ live(Z1).

yes(w6)← live(w5).

yes(w6)← connected to(w5,Z2) ∧ live(Z2).

yes(w6)← live(outside).

yes(w6)← .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 17 / 20



Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term. So that a term can be
f (t1, . . . , tn) where f is a function symbol and the ti are
terms.

In an interpretation and with a variable assignment, term
f (t1, . . . , tn) denotes an individual in the domain.

One function symbol and one constant can refer to infinitely
many individuals.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 18 / 20



Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the
function cons(H,T ) to denote the list with first element H
and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 19 / 20



Unification with function symbols

Consider a knowledge base consisting of one fact:

lt(X , s(X )).

Should the following query succeed?

ask lt(Y ,Y ).

What does the top-down proof procedure give?

Solution: variable X should not unify with a term that
contains X inside.
E.g., X should not unify with s(X ).
Simple modification of the unification algorithm, which Prolog
does not do!

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 15.2 20 / 20


