Fully Observable 4+ Multiple Agents

o If agents act sequentially and can observe the state before
acting: Perfect Information Games.

@ Can do dynamic programming or search:
Each agent maximizes for itself.

o Multi-agent MDPs: value function for each agent.
each agent maximizes its own value function.

@ Multi-agent reinforcement learning: each agent has its own @
function.
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Fully-observable Game Tree Search

1. procedure GameTreeSearch(n)

2 Inputs

3: n a node in a game tree

4 Output

5 A pair: value for each agent for node n, path that gives
this value

6: if nis a leaf node then

7: return {/ : evaluate(i,n)}, None

8: else if n is controlled by agent / then

0: max ;= — 00

10: for each child c of n do

11: score, path := GameTreeSearch(c)

12: if score[i] > max then

13: max := score[i]

14 res := (score, c : path)

15: return res
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Extensive Form of a Game

What happens with this game? Payoff is for Andy, Barb

Barb Barb Barb
yes no yes no yes no
@) @) @) @) @) @)
2,0 0,0 1,1 0,0 0,2 0,0

What if the 2,0 payoff was 1.9,0.17
Should Barb be rational / predictable?
What should Andy do if Barb threatens to not do her best action?
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Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for
one agent is negative of utility of other agent. = minimax.

MAX

MIN

11 12 5

@ square MAX nodes controlled by maximizing agent score

@ round MIN nodes are controlled by a minimizing adversary

@ leaves without a number do not need to be evaluated.
— a-0 pruning.
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Partial Observability and Competition

goalkeeper

l left | right

kicker left 06| 0.2

. right | 0.3 | 0.9

Probability of a goal.

@ Each agent decides what to do without seeing the other
agent's action.

@ What should each agent do?
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Strategy Profiles

Assume an n-player game in normal form

A strategy for an agent is a probability distribution over the
actions for this agent.

A strategy profile is an assignment of a strategy to each agent.

A strategy profile o has a utility for each agent.
Let utility(o, i) be the utility of strategy profile o for agent i.

o If o is a strategy profile:
oj is the strategy of agent i in o,
o_; is the set of strategies of the other agents.
Thus o is gjo_;
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Nash Equilibria

@ 0 is a best response to o_; if for all other strategies o/ for
agent /,

utility(ojo_;, i) > utility(aio_;, i).

@ A strategy profile o is a Nash equilibrium if for each agent /,
strategy o; is a best response to o_;. That is, a Nash
equilibrium is a strategy profile such that no agent can do
better by unilaterally deviating from that profile.

@ Theorem [Nash, 1950] Every finite game has at least one
Nash equilibrium.
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Stochastic Policies
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Pr
goalkeeper
left | right

kicker left | 0.6 | 0.2 pk is P(kicker = right)
right | 0.3 | 0.9 pj is P(goalkeeper = right)
Probability of a goal.
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Multiple Equilibria

Hawk-Dove Game:
Agent 2

dove hawk
Agent 1 dove | R/2,R/2 | O,R
hawk R,0 -D,-D

D and R are both positive with D >> R.
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Just because you know the Nash equilibria doesn’t mean you know

what to do:
Agent 2
shopping | football
Agent 1 shopping 2,1 0,0
football 0,0 1,2
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Prisoner’'s Dilemma

Two strangers are in a game show. They each have the choice:
e Take $100 for yourself
@ Give $1000 to the other player

This can be depicted as the playoff matrix:

Player 2
take give
Player 1 take | 100,100 1100,0

give | 0,1100 | 1000,1000
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Tragedy of the Commons

Example:
@ There are 100 agents.

@ There is an common environment that is shared amongst all
agents. Each agent has 1/100 of the shared environment.

@ Each agent can choose to do an action that has a payoff of
+10 but has a -100 payoff on the environment
or do nothing with a zero payoff

@ For each agent, doing the action has a payoff of
10 — 100/100 =9

o If every agent does the action the total payoff is
1000 — 10000 = —9000
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Computing Nash Equilibria

To compute a Nash equilibria for a game in strategic form:
@ Eliminate dominated strategies

@ Determine which actions will have non-zero probabilities. This
is the support set.

@ Determine the probability for the actions in the support set
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Eliminating Dominated Strategies

Agent 2
o e h
ar |35 51 12
Agent1l by | 1,1 29 64
a |26 47 08

Can prune c¢; becuase it is dominated by a;

Can prune f, becuase it is dominated by [0.5: d»,0.5 : &]
Next prune b; then e

Single Nash equilibrium is (a1, db)
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Computing probabilities in randomized strategies

Given a support set:

@ Why would an agent will randomize between actions a; ... ax?
Actions aj ... ax have the same value for that agent given the
strategies for the other agents.

@ This forms a set of simultaneous equations where variables are
probabilities of the actions

@ A solution with all probabilities in range (0,1) is a Nash
equilibrium.

Search over support sets to find a Nash equilibrium
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Example: computing Nash equilibrium

goalkeeper

left | right
kicker left 0.6 | 0.2
right | 0.3 | 0.9

Probability of a goal.
When would goalkeeper randomize?
Let px be probability the kicker will kick right.
P(goal | jump left) = p(goal | jump right)
pk*03+ (1 —pk)*x0.6 = pe*x0.9+(1—pg)*0.2
06—-02 = (0.6—-0.3+0.9—-0.2)* px
Pk = 0.4
Similarly for goal keeper: P(jump right) = 0.3
Probability of a goal is:
(0.6+0.7)%0.6+(0.6%0.3)%0.2+4(0.4%0.7)*0.3+(0.4%0.3)%0.9 = 0.48
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Fictitious Play

@ Collect statistics of the other player.

@ Assuming those statistics reflect the stochastic policy of the
other agent, play a best response.

@ Both players using fictitious play converges to a Nash
equilibrium for many types of games (including two-player
zero-sum games).

e If an opposing agent knew the exact strategy (whether

learning or not) agent A was using, and could predict what
agent A would do, it could exploit that knowledge.
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1. controller Stochastic_policy_iteration(S, A, v, v, g_init, p_init)
2 Inputs

3 S is states, A is actions, « is step size, 7y discount

4 g-init and p_init (> 0) are initial Q and P values

5: Local

6 P[S, A] unnormalized P(a | s) > Dirichlet
7 Q[S, A] estimate of value of doing A in state S

8 P[s, a] := p_init; Q[s, a] := q_init foreachs € Sand ac A
9: observe state s; select action a at random

10: repeat

11: do(a)

12: observe reward r, state s’

13: select action a’ based on P[s',d']/ >, P[s,a"]

14 Q[s,a] :== Q[s,a]l +ax(r+vxQ[s,a]— Q[s, a])

15: a_best := arg max,(Q[s, a])

16: P[s, a_best] = Pls, a_best] + 1

17: s:=s5:a:=a

18: until termination
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Stochastic Policies

Probability kicker kicks right

0?2 0t3 0f4 ofs 0?6 0t7
Probability goalkeeper jumps right
Repeated playing goal-kick game with single state (o = 0.1, v = 0,
g-init =1, p_init = 5).
AlPython: masLearn.py
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Stochastic Policies

AlphaZero — plays world-class chess, shogi, and Go. Improvement
of program that beat Lee Sedol in 2016.
@ implements modified policy iteration
@ uses a deep neural network:
» Input:the board position
» Output: the value function and a stochastic policy
@ To get a better estimate of the current state, it does
stochastic simulation (forward sampling) of the rest of the

game, using the stochastic policy with the upper confidence
bound (UCB).

@ This relies on a model to restart the search from any point.

@ It was trained on self-play, playing itself for tens of millions of
games.
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