Fully Observable + Multiple Agents

- If agents act sequentially and can observe the state before acting: Perfect Information Games.
- Can do dynamic programming or search: Each agent maximizes for itself.
- Multi-agent MDPs: value function for each agent. each agent maximizes its own value function.
- Multi-agent reinforcement learning: each agent has its own Q function.

Fully-observable Game Tree Search

1: procedure GameTreeSearch(n)
2: Inputs
n a node in a game tree

Output

A pair: value for each agent for node n, path that gives
this value
6: \quad if n is a leaf node then

7:
8:
9 :
return $\{i$: evaluate $(i, n)\}$, None else if n is controlled by agent i then $\max :=-\infty$
for each child c of n do
score, path := GameTreeSearch(c)
if score[i] > max then

$$
\max :=\operatorname{score}[i]
$$

$$
\text { res }:=(\text { score, } c: \text { path })
$$

return res

Extensive Form of a Game

What happens with this game? Payoff is for Andy, Barb

What if the 2,0 payoff was $1.9,0.1$?
Should Barb be rational / predictable?
What should Andy do if Barb threatens to not do her best action?

Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for one agent is negative of utility of other agent. \Longrightarrow minimax.

- square MAX nodes controlled by maximizing agent score
- round MIN nodes are controlled by a minimizing adversary
- leaves without a number do not need to be evaluated.
$\longrightarrow \alpha-\beta$ pruning.

Partial Observability and Competition

- Each agent decides what to do without seeing the other agent's action.
- What should each agent do?

Strategy Profiles

- Assume an n-player game in normal form
- A strategy for an agent is a probability distribution over the actions for this agent.
- A strategy profile is an assignment of a strategy to each agent.
- A strategy profile σ has a utility for each agent. Let utility (σ, i) be the utility of strategy profile σ for agent i.
- If σ is a strategy profile:
σ_{i} is the strategy of agent i in σ, σ_{-i} is the set of strategies of the other agents.
Thus σ is $\sigma_{i} \sigma_{-i}$

Nash Equilibria

- σ_{i} is a best response to σ_{-i} if for all other strategies σ_{i}^{\prime} for agent i,

$$
u \text { utility }\left(\sigma_{i} \sigma_{-i}, i\right) \geq u \operatorname{tility}\left(\sigma_{i}^{\prime} \sigma_{-i}, i\right)
$$

- A strategy profile σ is a Nash equilibrium if for each agent i, strategy σ_{i} is a best response to σ_{-i}. That is, a Nash equilibrium is a strategy profile such that no agent can do better by unilaterally deviating from that profile.
- Theorem [Nash, 1950] Every finite game has at least one Nash equilibrium.

Stochastic Policies

Multiple Equilibria

Hawk-Dove Game:
Agent 2

Agent 1 | | | dove |
| :---: | :---: | :---: |
| hawk | | |
| | dove | $\mathrm{R} / 2, \mathrm{R} / 2$ |
| 0 | $0, \mathrm{R}$ | |
| | hawk | $\mathrm{R}, 0$ |

D and R are both positive with $D \gg R$.

Coordination

Just because you know the Nash equilibria doesn't mean you know what to do:

		Agent 2	
		shopping	football
Agent 1	shopping	2,1	0,0
	football	0,0	1,2

Prisoner's Dilemma

Two strangers are in a game show. They each have the choice:

- Take $\$ 100$ for yourself
- Give $\$ 1000$ to the other player

This can be depicted as the playoff matrix:

		Player 2	
		take	give
Player 1	take	100,100	1100,0
	give	0,1100	1000,1000

Tragedy of the Commons

Example:

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has $1 / 100$ of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment
or do nothing with a zero payoff
- For each agent, doing the action has a payoff of $10-100 / 100=9$
- If every agent does the action the total payoff is $1000-10000=-9000$

Computing Nash Equilibria

To compute a Nash equilibria for a game in strategic form:

- Eliminate dominated strategies
- Determine which actions will have non-zero probabilities. This is the support set.
- Determine the probability for the actions in the support set

Eliminating Dominated Strategies

	Agent 2			
		d_{2}	e_{2}	f_{2}
Agent 1	a_{1}	3,5	5,1	1,2
	b_{1}	1,1	2,9	6,4
	c_{1}	2,6	4,7	0,8

- Can prune c_{1} becuase it is dominated by a_{1}
- Can prune f_{2} becuase it is dominated by $\left[0.5: d_{2}, 0.5: e_{2}\right]$
- Next prune b_{1} then e_{2}
- Single Nash equilibrium is $\left(a_{1}, d_{2}\right)$

Computing probabilities in randomized strategies

Given a support set:

- Why would an agent will randomize between actions $a_{1} \ldots a_{k}$? Actions $a_{1} \ldots a_{k}$ have the same value for that agent given the strategies for the other agents.
- This forms a set of simultaneous equations where variables are probabilities of the actions
- A solution with all probabilities in range $(0,1)$ is a Nash equilibrium.
Search over support sets to find a Nash equilibrium

Example: computing Nash equilibrium

When would goalkeeper randomize?
Let p_{k} be probability the kicker will kick right.

$$
\begin{aligned}
P(\text { goal } \mid \text { jump left }) & =p(\text { goal } \mid \text { jump right }) \\
p_{k} * 0.3+\left(1-p_{k}\right) * 0.6 & =p_{k} * 0.9+\left(1-p_{k}\right) * 0.2 \\
0.6-0.2 & =(0.6-0.3+0.9-0.2) * p_{k} \\
p_{k} & =0.4
\end{aligned}
$$

Similarly for goal keeper: $P($ jump right $)=0.3$
Probability of a goal is:
$(0.6 * 0.7) * 0.6+(0.6 * 0.3) * 0.2+(0.4 * 0.7) * 0.3+(0.4 * 0.3) * 0.9=0.48$

Fictitious Play

- Collect statistics of the other player.
- Assuming those statistics reflect the stochastic policy of the other agent, play a best response.
- Both players using fictitious play converges to a Nash equilibrium for many types of games (including two-player zero-sum games).
- If an opposing agent knew the exact strategy (whether learning or not) agent A was using, and could predict what agent A would do, it could exploit that knowledge.

1: controller Stochastic_policy_iteration(S, A, $\left.\alpha, \gamma, q_{-} i n i t, p _i n i t\right)$
2: Inputs
3: $\quad S$ is states, A is actions, α is step size, γ discount

4:
$5:$

10: repeat
do(a)
observe reward r, state s^{\prime}
select action a^{\prime} based on $P\left[s^{\prime}, a^{\prime}\right] / \sum_{a^{\prime \prime}} P\left[s^{\prime}, a^{\prime \prime}\right]$
$Q[s, a]:=Q[s, a]+\alpha *\left(r+\gamma * Q\left[s^{\prime}, a^{\prime}\right]-Q[s, a]\right)$
a_best $:=\arg \max _{a}(Q[s, a])$
$P\left[s, a_{-} b e s t\right]=P\left[s, a_{-} b e s t\right]+1$
$s:=s^{\prime} ; a:=a^{\prime}$
until termination

Stochastic Policies

Repeated playing goal-kick game with single state ($\alpha=0.1, \gamma=0$, $q_{\text {_init }}=1, p_{\text {_init }}=5$).
AIPython: masLearn.py

Stochastic Policies

AlphaZero - plays world-class chess, shogi, and Go. Improvement of program that beat Lee Sedol in 2016.

- implements modified policy iteration
- uses a deep neural network:
- Input:the board position
- Output: the value function and a stochastic policy
- To get a better estimate of the current state, it does stochastic simulation (forward sampling) of the rest of the game, using the stochastic policy with the upper confidence bound (UCB).
- This relies on a model to restart the search from any point.
- It was trained on self-play, playing itself for tens of millions of games.

