• If agents act sequentially and can observe the state before acting: Perfect Information Games.

- If agents act sequentially and can observe the state before acting: Perfect Information Games.
- Can do dynamic programming or search: Each agent maximizes for itself.

Image: Ima

- If agents act sequentially and can observe the state before acting: Perfect Information Games.
- Can do dynamic programming or search: Each agent maximizes for itself.
- Multi-agent MDPs: value function for each agent. each agent maximizes its own value function.

- If agents act sequentially and can observe the state before acting: Perfect Information Games.
- Can do dynamic programming or search: Each agent maximizes for itself.
- Multi-agent MDPs: value function for each agent. each agent maximizes its own value function.
- Multi-agent reinforcement learning: each agent has its own *Q* function.

Fully-observable Game Tree Search

- 1: **procedure** GameTreeSearch(n)
- 2: Inputs
- 3: *n* a node in a game tree
- 4: Output
- 5: A pair: value for each agent for node *n*, path that gives this value
- 6: **if** *n* is a leaf node **then**
- 7: return $\{i : evaluate(i, n)\}$, None
- 8: else if *n* is controlled by agent *i* then
- 9: $max := -\infty$
- 10: for each child c of n do
- 11: score, path := GameTreeSearch(c)
- 12: **if** score[i] > max **then**
- 13: max := score[i]
- 14: res := (score, c : path)

15: return res

2 / 20

What happens with this game? Payoff is for Andy, Barb

< □

What happens with this game? Payoff is for Andy, Barb

What if the 2,0 payoff was 1.9,0.1?

< 🗆 .

What happens with this game? Payoff is for Andy, Barb

What if the 2,0 payoff was 1.9,0.1? Should Barb be rational / predictable?

Image: Ima

What happens with this game? Payoff is for Andy, Barb

What if the 2,0 payoff was 1.9,0.1? Should Barb be rational / predictable? What should Andy do if Barb threatens to not do her best action?

< □

Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for one agent is negative of utility of other agent. \implies minimax.

Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for one agent is negative of utility of other agent. \implies minimax.

square MAX nodes controlled by maximizing agent scoreround MIN nodes are controlled by a minimizing adversary

< 🗆 .

Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for one agent is negative of utility of other agent. \implies minimax.

- square MAX nodes controlled by maximizing agent score
- round MIN nodes are controlled by a minimizing adversary
- leaves without a number do not need to be evaluated. $\rightarrow \alpha$ - β pruning.

Partial Observability and Competition

 Each agent decides what to do without seeing the other agent's action.

< □

Partial Observability and Competition

- Each agent decides what to do without seeing the other agent's action.
- What should each agent do?

- Assume an *n*-player game in normal form
- A strategy for an agent is a probability distribution over the actions for this agent.

00

- Assume an *n*-player game in normal form
- A strategy for an agent is a probability distribution over the actions for this agent.
- A strategy profile is an assignment of a strategy to each agent.

< □

- Assume an *n*-player game in normal form
- A strategy for an agent is a probability distribution over the actions for this agent.
- A strategy profile is an assignment of a strategy to each agent.
- A strategy profile σ has a utility for each agent.
 Let utility(σ, i) be the utility of strategy profile σ for agent i.
- If σ is a strategy profile:
 σ_i is the strategy of agent i in σ,
 σ_{-i} is the set of strategies of the other agents.
 Thus σ is σ_iσ_{-i}

σ_i is a best response to σ_{-i} if for all other strategies σ'_i for agent i,

 $utility(\sigma_i \sigma_{-i}, i) \geq utility(\sigma'_i \sigma_{-i}, i).$

- U

σ_i is a best response to σ_{-i} if for all other strategies σ'_i for agent i,

$$utility(\sigma_i\sigma_{-i},i) \geq utility(\sigma'_i\sigma_{-i},i).$$

A strategy profile σ is a Nash equilibrium if for each agent *i*, strategy σ_i is a best response to σ_{-i}. That is, a Nash equilibrium is a strategy profile such that no agent can do better by unilaterally deviating from that profile.

< □

σ_i is a best response to σ_{-i} if for all other strategies σ'_i for agent i,

$$utility(\sigma_i\sigma_{-i},i) \geq utility(\sigma'_i\sigma_{-i},i).$$

- A strategy profile σ is a Nash equilibrium if for each agent *i*, strategy σ_i is a best response to σ_{-i}. That is, a Nash equilibrium is a strategy profile such that no agent can do better by unilaterally deviating from that profile.
- Theorem [Nash, 1950] Every finite game has at least one Nash equilibrium.

Stochastic Policies

Image: Ima

D and R are both positive with D >> R.

< □

Just because you know the Nash equilibria doesn't mean you know what to do:

		Agent 2	
		shopping	football
Agent 1	shopping	2,1	0,0
	football	0,0	1,2

Two strangers are in a game show. They each have the choice:

- Take \$100 for yourself
- Give \$1000 to the other player

This can be depicted as the playoff matrix:

		Player 2		
		take	give	
Player 1	take	100,100	1100,0	
	give	0,1100	1000,1000	

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of 10 100/100 = 9
- If every agent does the action the total payoff is

- There are 100 agents.
- There is an common environment that is shared amongst all agents. Each agent has 1/100 of the shared environment.
- Each agent can choose to do an action that has a payoff of +10 but has a -100 payoff on the environment or do nothing with a zero payoff
- For each agent, doing the action has a payoff of 10 100/100 = 9
- If every agent does the action the total payoff is 1000 10000 = -9000

< 🗆 .

To compute a Nash equilibria for a game in strategic form:

- Eliminate dominated strategies
- Determine which actions will have non-zero probabilities. This is the support set.
- Determine the probability for the actions in the support set

< 🗆 I

• Can prune

Image: Ima

• Can prune c₁ becuase it is dominated by

< 🗆 .

• Can prune c₁ becuase it is dominated by a₁

Image: Ima

- Can prune c₁ becuase it is dominated by a₁
- Can prune f_2 becuase it is dominated by

- Can prune c₁ becuase it is dominated by a₁
- Can prune f_2 becuase it is dominated by $[0.5: d_2, 0.5: e_2]$

- Can prune c_1 becuase it is dominated by a_1
- Can prune f_2 becuase it is dominated by $[0.5: d_2, 0.5: e_2]$
- Next prune b₁ then

Eliminating Dominated Strategies

- Can prune c₁ becuase it is dominated by a₁
- Can prune f_2 becuase it is dominated by $[0.5: d_2, 0.5: e_2]$
- Next prune b₁ then e₂
- Single Nash equilibrium is

Eliminating Dominated Strategies

- Can prune c₁ becuase it is dominated by a₁
- Can prune f_2 becuase it is dominated by $[0.5: d_2, 0.5: e_2]$
- Next prune b₁ then e₂
- Single Nash equilibrium is (a_1, d_2)

• Why would an agent will randomize between actions $a_1 \dots a_k$?

< 🗆 .

• Why would an agent will randomize between actions $a_1 \dots a_k$? Actions $a_1 \dots a_k$ have the same value for that agent given the strategies for the other agents.

- Why would an agent will randomize between actions a₁... a_k? Actions a₁... a_k have the same value for that agent given the strategies for the other agents.
- This forms a set of simultaneous equations where variables are probabilities of the actions

- Why would an agent will randomize between actions $a_1 \dots a_k$? Actions $a_1 \dots a_k$ have the same value for that agent given the strategies for the other agents.
- This forms a set of simultaneous equations where variables are probabilities of the actions
- A solution with all probabilities in range (0,1) is a Nash equilibrium.

- Why would an agent will randomize between actions $a_1 \dots a_k$? Actions $a_1 \dots a_k$ have the same value for that agent given the strategies for the other agents.
- This forms a set of simultaneous equations where variables are probabilities of the actions
- A solution with all probabilities in range (0,1) is a Nash equilibrium.

Search over support sets to find a Nash equilibrium

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize?

< 🗆 .

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize? Let p_k be probability the kicker will kick right.

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize? Let p_k be probability the kicker will kick right.

P(goal | jump left) = p(goal | jump right)

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize? Let p_k be probability the kicker will kick right.

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize? Let p_k be probability the kicker will kick right.

$$P(goal | jump left) = p(goal | jump right)$$

$$p_k * 0.3 + (1 - p_k) * 0.6 = p_k * 0.9 + (1 - p_k) * 0.2$$

$$0.6 - 0.2 = (0.6 - 0.3 + 0.9 - 0.2) * p_k$$

$$p_k = 0.4$$

< □

		goalkeeper	
		left	right
kicker	left	0.6	0.2
	right	0.3	0.9
Probability of a goal.			

When would goalkeeper randomize? Let p_k be probability the kicker will kick right.

$$P(goal | jump left) = p(goal | jump right)$$

$$p_k * 0.3 + (1 - p_k) * 0.6 = p_k * 0.9 + (1 - p_k) * 0.2$$

$$0.6 - 0.2 = (0.6 - 0.3 + 0.9 - 0.2) * p_k$$

$$p_k = 0.4$$

Similarly for goal keeper: $P(jump \ right) = 0.3$ Probability of a goal is: (0.6*0.7)*0.6+(0.6*0.3)*0.2+(0.4*0.7)*0.3+(0.4*0.3)*0.9 = 0.48

- Collect statistics of the other player.
- Assuming those statistics reflect the stochastic policy of the other agent, play a best response.

.

- Collect statistics of the other player.
- Assuming those statistics reflect the stochastic policy of the other agent, play a best response.
- Both players using fictitious play converges to a Nash equilibrium for many types of games (including two-player zero-sum games).

- Collect statistics of the other player.
- Assuming those statistics reflect the stochastic policy of the other agent, play a best response.
- Both players using fictitious play converges to a Nash equilibrium for many types of games (including two-player zero-sum games).
- If an opposing agent knew the exact strategy (whether learning or not) agent A was using, and could predict what agent A would do, it could exploit that knowledge.

- 1: controller Stochastic_policy_iteration($S, A, \alpha, \gamma, q_{-init}, p_{-init}$) 2: Inputs 3: S is states, A is actions, α is step size, γ discount 4: q_{-init} and p_{-init} (> 0) are initial Q and P values 5: Local 6: P[S, A] unnormalized P(a | s) \triangleright Dirichlet 7: Q[S, A] estimate of value of doing A in state S
- 8: $P[s,a] := p_init; Q[s,a] := q_init$ for each $s \in S$ and $a \in A$

1: controller Stochastic_policy_iteration($S, A, \alpha, \gamma, q_{-init}, p_{-init}$) 2: Inputs S is states, A is actions, α is step size, γ discount 3: q_{init} and p_{init} (> 0) are initial Q and P values 4: 5: Local P[S, A] unnormalized $P(a \mid s)$ ▷ Dirichlet 6: Q[S, A] estimate of value of doing A in state S 7: $P[s, a] := p_{-init}; Q[s, a] := q_{-init}$ for each $s \in S$ and $a \in A$ 8: **observe** state s; **select** action a at random 9: 10: repeat do(a)11: **observe** reward r, state s' 12:

< 🗆 I

1:	controller <i>Stochastic_policy_iteration</i> (<i>S</i> , <i>A</i> , α , γ , <i>q_init</i> , <i>p_init</i>)
2:	Inputs
3:	${m {\cal S}}$ is states, ${m {\cal A}}$ is actions, $lpha$ is step size, γ discount
4:	q_init and p_init (>0) are initial Q and P values
5:	Local
6:	$P[S, A]$ unnormalized $P(a \mid s)$ \triangleright Dirichlet
7:	Q[S, A] estimate of value of doing A in state S
8:	$P[s,a]:=p_init; \; Q[s,a]:=q_init ext{ for each } s\in S ext{ and } a\in A$
9:	observe state <i>s</i> ; select action <i>a</i> at random
10:	repeat
11:	do(a)
12:	observe reward r , state s'
13:	select action a' based on $P[s', a'] / \sum_{a''} P[s', a'']$
14:	$Q[s,a] := Q[s,a] + lpha * (r + \gamma * Q[s',a'] - Q[s,a])$

< 🗆 I

1:	controller Stochastic_policy_iteration($S, A, \alpha, \gamma, q_init, p_init$)
2:	Inputs
3:	${\cal S}$ is states, ${\cal A}$ is actions, $lpha$ is step size, γ discount
4:	q_init and p_init (>0) are initial Q and P values
5:	Local
6:	$P[S, A]$ unnormalized $P(a \mid s)$ \triangleright Dirichlet
7:	Q[S, A] estimate of value of doing A in state S
8:	$P[s,a]:=p_init; \; Q[s,a]:=q_init ext{ for each } s\in S ext{ and } a\in A$
9:	observe state <i>s</i> ; select action <i>a</i> at random
10:	repeat
11:	do(a)
12:	observe reward r , state s'
13:	select action a' based on $P[s', a'] / \sum_{a''} P[s', a'']$
14:	$Q[s,a] := Q[s,a] + lpha * (r + \gamma * Q[s',a'] - Q[s,a])$
15:	$a_best := arg \max_a(Q[s,a])$
16:	$P[s, a_best] = P[s, a_best] + 1$

1:	controller Stochastic_policy_iteration($S, A, \alpha, \gamma, q_{-init}, p_{-init}$)
2:	Inputs
3:	${m {\cal S}}$ is states, ${m {\cal A}}$ is actions, $lpha$ is step size, γ discount
4:	q_init and p_init (>0) are initial Q and P values
5:	Local
6:	$P[S, A]$ unnormalized $P(a \mid s)$ \triangleright Dirichlet
7:	Q[S, A] estimate of value of doing A in state S
8:	$P[s,a] := p_init; \ Q[s,a] := q_init ext{ for each } s \in S ext{ and } a \in A$
9:	observe state <i>s</i> ; select action <i>a</i> at random
10:	repeat
11:	do(a)
12:	observe reward r , state s'
13:	select action a' based on $P[s', a'] / \sum_{a''} P[s', a'']$
14:	$Q[s,a] := Q[s,a] + lpha * (r + \gamma * Q[s',a'] - Q[s,a])$
15:	$a_best := arg \max_a(Q[s,a])$
16:	$P[s, a_best] = P[s, a_best] + 1$
17:	s:=s'; $a:=a'$
18:	until termination

Stochastic Policies

Repeated playing goal-kick game with single state ($\alpha = 0.1$, $\gamma = 0$, $q_{-init} = 1$, $p_{-init} = 5$). AIPython: masLearn.py

- implements modified policy iteration
- uses a deep neural network:
 - Input:the board position
 - Output: the value function and a stochastic policy

- implements modified policy iteration
- uses a deep neural network:
 - Input:the board position
 - Output: the value function and a stochastic policy
- To get a better estimate of the current state, it does stochastic simulation (forward sampling) of the rest of the game, using the stochastic policy with the upper confidence bound (UCB).

- implements modified policy iteration
- uses a deep neural network:
 - Input:the board position
 - Output: the value function and a stochastic policy
- To get a better estimate of the current state, it does stochastic simulation (forward sampling) of the rest of the game, using the stochastic policy with the upper confidence bound (UCB).
- This relies on a model to restart the search from any point.

- implements modified policy iteration
- uses a deep neural network:
 - Input:the board position
 - Output: the value function and a stochastic policy
- To get a better estimate of the current state, it does stochastic simulation (forward sampling) of the rest of the game, using the stochastic policy with the upper confidence bound (UCB).
- This relies on a model to restart the search from any point.
- It was trained on self-play, playing itself for tens of millions of games.

< □