
Fully Observable + Multiple Agents

If agents act sequentially and can observe the state before
acting: Perfect Information Games.

Can do dynamic programming or search:
Each agent maximizes for itself.

Multi-agent MDPs: value function for each agent.
each agent maximizes its own value function.

Multi-agent reinforcement learning: each agent has its own Q
function.
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Fully-observable Game Tree Search

1: procedure GameTreeSearch(n)
2: Inputs
3: n a node in a game tree

4: Output
5: A pair: value for each agent for node n, path that gives

this value
6: if n is a leaf node then
7: return {i : evaluate(i , n)},None
8: else if n is controlled by agent i then
9: max := −∞

10: for each child c of n do
11: score, path := GameTreeSearch(c)
12: if score[i ] > max then
13: max := score[i ]
14: res := (score, c : path)

15: return res
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Extensive Form of a Game

What happens with this game? Payoff is for Andy ,Barb

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0

What if the 2,0 payoff was 1.9,0.1?
Should Barb be rational / predictable?
What should Andy do if Barb threatens to not do her best action?
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Pruning Dominated Strategies

Special case: two person, competitive (zero sum) game. Utility for
one agent is negative of utility of other agent. =⇒ minimax.

h i j k l m n o

d e f g

b c
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7

≤5 ≤4≤6

≤5
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≥11
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MIN

MIN

MAX

square MAX nodes controlled by maximizing agent score

round MIN nodes are controlled by a minimizing adversary

leaves without a number do not need to be evaluated.
−→ α-β pruning.
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Partial Observability and Competition

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.

Each agent decides what to do without seeing the other
agent’s action.

What should each agent do?
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Strategy Profiles

Assume an n-player game in normal form

A strategy for an agent is a probability distribution over the
actions for this agent.

A strategy profile is an assignment of a strategy to each agent.

A strategy profile σ has a utility for each agent.
Let utility(σ, i) be the utility of strategy profile σ for agent i .

If σ is a strategy profile:
σi is the strategy of agent i in σ,
σ−i is the set of strategies of the other agents.
Thus σ is σiσ−i
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Nash Equilibria

σi is a best response to σ−i if for all other strategies σ
′
i for

agent i ,

utility(σiσ−i , i) ≥ utility(σ′
iσ−i , i).

A strategy profile σ is a Nash equilibrium if for each agent i ,
strategy σi is a best response to σ−i . That is, a Nash
equilibrium is a strategy profile such that no agent can do
better by unilaterally deviating from that profile.

Theorem [Nash, 1950] Every finite game has at least one
Nash equilibrium.
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Stochastic Policies

0 0.2 0.4 0.6 0.8 1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

pk

P(goal)

pj=1

pj= 0

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.

pk is P(kicker = right)
pj is P(goalkeeper = right)
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Multiple Equilibria

Hawk-Dove Game:
Agent 2

dove hawk
Agent 1 dove R/2,R/2 0,R

hawk R,0 -D,-D

D and R are both positive with D >> R.
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Coordination

Just because you know the Nash equilibria doesn’t mean you know
what to do:

Agent 2
shopping football

Agent 1 shopping 2,1 0,0
football 0,0 1,2
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Prisoner’s Dilemma

Two strangers are in a game show. They each have the choice:

Take $100 for yourself

Give $1000 to the other player

This can be depicted as the playoff matrix:

Player 2
take give

Player 1 take 100,100 1100,0
give 0,1100 1000,1000
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Tragedy of the Commons

Example:

There are 100 agents.

There is an common environment that is shared amongst all
agents. Each agent has 1/100 of the shared environment.

Each agent can choose to do an action that has a payoff of
+10 but has a -100 payoff on the environment
or do nothing with a zero payoff

For each agent, doing the action has a payoff of
10− 100/100 = 9

If every agent does the action the total payoff is
1000− 10000 = −9000
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Computing Nash Equilibria

To compute a Nash equilibria for a game in strategic form:

Eliminate dominated strategies

Determine which actions will have non-zero probabilities. This
is the support set.

Determine the probability for the actions in the support set
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Eliminating Dominated Strategies

Agent 2
d2 e2 f2

a1 3,5 5,1 1,2
Agent 1 b1 1,1 2,9 6,4

c1 2,6 4,7 0,8

Can prune c1 becuase it is dominated by a1

Can prune f2 becuase it is dominated by [0.5 : d2, 0.5 : e2]

Next prune b1 then e2

Single Nash equilibrium is (a1, d2)
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Computing probabilities in randomized strategies

Given a support set:

Why would an agent will randomize between actions a1 . . . ak?

Actions a1 . . . ak have the same value for that agent given the
strategies for the other agents.

This forms a set of simultaneous equations where variables are
probabilities of the actions

A solution with all probabilities in range (0,1) is a Nash
equilibrium.

Search over support sets to find a Nash equilibrium
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Example: computing Nash equilibrium

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal.

When would goalkeeper randomize?

Let pk be probability the kicker will kick right.

P(goal | jump left) = p(goal | jump right)

pk ∗ 0.3 + (1− pk) ∗ 0.6 = pk ∗ 0.9 + (1− pk) ∗ 0.2
0.6− 0.2 = (0.6− 0.3 + 0.9− 0.2) ∗ pk

pk = 0.4

Similarly for goal keeper: P(jump right) = 0.3
Probability of a goal is:
(0.6∗0.7)∗0.6+(0.6∗0.3)∗0.2+(0.4∗0.7)∗0.3+(0.4∗0.3)∗0.9 = 0.48
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Fictitious Play

Collect statistics of the other player.

Assuming those statistics reflect the stochastic policy of the
other agent, play a best response.

Both players using fictitious play converges to a Nash
equilibrium for many types of games (including two-player
zero-sum games).

If an opposing agent knew the exact strategy (whether
learning or not) agent A was using, and could predict what
agent A would do, it could exploit that knowledge.
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1: controller Stochastic policy iteration(S ,A, α, γ, q init, p init)
2: Inputs
3: S is states, A is actions, α is step size, γ discount
4: q init and p init (> 0) are initial Q and P values

5: Local
6: P[S ,A] unnormalized P(a | s) ▷ Dirichlet
7: Q[S ,A] estimate of value of doing A in state S

8: P[s, a] := p init; Q[s, a] := q init for each s ∈ S and a ∈ A

9: observe state s; select action a at random
10: repeat
11: do(a)
12: observe reward r , state s ′

13: select action a′ based on P[s ′, a′]/
∑

a′′ P[s
′, a′′]

14: Q[s, a] := Q[s, a] + α ∗ (r + γ ∗ Q[s ′, a′]− Q[s, a])
15: a best := argmaxa(Q[s, a])
16: P[s, a best] = P[s, a best] + 1
17: s := s ′; a := a′

18: until termination
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Stochastic Policies
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Repeated playing goal-kick game with single state (α = 0.1, γ = 0,
q init = 1, p init = 5).
AIPython: masLearn.py
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Stochastic Policies

AlphaZero – plays world-class chess, shogi, and Go. Improvement
of program that beat Lee Sedol in 2016.

implements modified policy iteration

uses a deep neural network:
▶ Input:the board position
▶ Output: the value function and a stochastic policy

To get a better estimate of the current state, it does
stochastic simulation (forward sampling) of the rest of the
game, using the stochastic policy with the upper confidence
bound (UCB).

This relies on a model to restart the search from any point.

It was trained on self-play, playing itself for tens of millions of
games.
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