
On-policy Learning

Q-learning does off-policy learning: it learns the value of an
optimal policy, no matter what it does.

This could be bad if the exploration policy is dangerous.

On-policy learning learns the value of the policy being
followed.
e.g., act greedily 80% of the time and act randomly 20% of
the time

Why? If the agent is actually going to explore, it may be
better to optimize the actual policy it is going to do.

SARSA uses the experience ⟨s, a, r , s ′, a′⟩ to update Q[s, a].

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 1 / 17



SARSA

initialize Q[S ,A] arbitrarily
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ using a policy based on Q
Q[s, a] := Q[s, a] + α (r + γQ[s ′, a′]− Q[s, a])
s := s ′

a := a′

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 2 / 17



Q-learning with Action Replay

initialize Q[S ,A] arbitrarily
E = {}
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

E := E ∪ {⟨s, a, r , s ′⟩}
Q[s, a] := Q[s, a] + α (r + γmaxa′ Q[s ′, a′]− Q[s, a])
repeat for a while:

select ⟨s1, a1, r1, s ′1⟩ ∈ E

Q[s1, a1] := Q[s1, a1] + α
(
r1 + γmaxa′1 Q[s ′1, a

′
1]− Q[s1, a1]

)
s := s ′

a := a′

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 3 / 17



Model-based Reinforcement Learning

Model-based reinforcement learning uses the experiences in a
more effective manner.

It is used when collecting experiences is expensive (e.g., in a
robot or an online game); an agent can do lots of
computation between each experience.

Idea: learn the MDP and interleave acting and planning.

After each experience, update probabilities and the reward,
then do some steps of asynchronous value iteration.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 4 / 17



Model-based learner

Data Structures: Q[S ,A], T [S ,A,S ], C [S ,A], R[S ,A]
Assign Q, R arbitrarily, C = 0, T = 0
observe current state s
repeat forever:

select and carry out action a
observe reward r and state s ′

T [s, a, s ′] := T [s, a, s ′] + 1
C [s, a] := C [s, a] + 1
R[s, a] := R[s, a] + (r − R[s, a])/C [s, a]
repeat for a while:

select state s1, action a1

Q[s1, a1] := R[s1, a1] +
∑
s2

T [s1, a1, s2]

C [s1, a1]

(
γmax

a2
Q[s2, a2]

)
s := s ′ What goes wrong with this?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 5 / 17



Reinforcement Learning with Features

Usually we don’t want to reason in terms of states, but in
terms of features.

In state-based methods, information about one state cannot
be used by similar states.

If there are too many parameters to learn, it takes too long.

Idea: Express the value (Q) function as a function of the
features. Most typical is a linear function of the features, or a
neural network.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 6 / 17



Reinforcement Learning

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 7 / 17



SARSA with Generalization

1: controller SARSA with Generalization(Learner , γ)
2: Inputs
3: Learner with operations Learner .add(x , y) and

Learner .predict(x).
4: γ ∈ [0, 1]: discount factor

5: observe current state s
6: select action a
7: repeat
8: do(a)
9: observe reward r and state s ′

10: select action a′ based on Learner .predict((s ′, a′))
11: Learner .add((s, a), r + γ ∗ Learner .predict((s ′, a′)))
12: s := s ′

13: a := a′

14: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 8 / 17



Review: Gradient descent

To find a (local) minimum of a real-valued function f (x):

assign an arbitrary value to x

repeat

x := x − η
df

dx

where η is the step size

To find a local minimum of real-valued function f (x1, . . . , xn):

assign arbitrary values to x1, . . . , xn

repeat:
for each xi

xi := xi − η
∂f

∂xi

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 9 / 17



Review: Linear Regression

A linear function of variables x1, . . . , xn is of the form

f w (x1, . . . , xn) = w0 + w1x1 + · · ·+ wnxn

w = ⟨w0,w1, . . . ,wn⟩ are weights. (Let x0 = 1).

Given a set E of examples.
Example e has input xi = ei for each i and observed value, oe :

ErrorE (w) =
∑
e∈E

(oe − f w (e1, . . . , en))
2

Minimizing the error using gradient descent, each example
should update wi using:

wi := wi − η
∂ErrorE (w)

∂wi

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 10 / 17



Review: Gradient Descent for Linear Regression

Given E : set of examples over n features
each example e has inputs (e1, . . . , en) and output oe :

Assign weights w = ⟨w0, . . . ,wn⟩ arbitrarily
repeat:

For each example e in E :
let δ = oe − f w (e1, . . . , en)
For each weight wi :

wi := wi + ηδei

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 11 / 17



SARSA with linear function approximation

One step backup provides the examples that can be used in a
linear regression.

Suppose F1, . . . ,Fn are the features of the state and the
action.

So Qw (s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

An experience ⟨s, a, r , s ′, a′⟩ provides the “example”:
▶ old predicted value: Qw (s, a)
▶ new “observed” value: r + γQw (s

′, a′)

Treat r + γQw (s
′, a′) as a new training example for Q(s, a) in

linear regression (or other supervised learning algorithm).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 12 / 17



SARSA with linear function approximation

Given γ:discount factor; η:step size
Assign weights w = ⟨w0, . . . ,wn⟩ arbitrarily
observe current state s
select action a
repeat forever:

carry out action a
observe reward r and state s ′

select action a′ (using a policy based on Qw )
let δ = r + γQw (s

′, a′)− Qw (s, a)
For i = 0 to n

wi := wi + ηδFi (s, a)
s := s ′

a := a′

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 13 / 17



Example Features

F1(s, a) = 1 if a goes from state s into a monster location and
is 0 otherwise.

F2(s, a) = 1 if a goes into a wall, is 0 otherwise.

F3(s, a) = 1 if a goes toward a prize.

F4(s, a) = 1 if the agent is damaged in state s and action a
takes it toward the repair station.

F5(s, a) = 1 if the agent is damaged and action a goes into a
monster location.

F6(s, a) = 1 if the agent is damaged.

F7(s, a) = 1 if the agent is not damaged.

F8(s, a) = 1 if the agent is damaged and there is a prize in
direction a.

F9(s, a) = 1 if the agent is not damaged and there is a prize
in direction a.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 14 / 17



Example Features

F10(s, a) is the distance from the left wall if there is a prize at
location P0, and is 0 otherwise.

F11(s, a) has the value 4− x , where x is the horizontal position
of state s if there is a prize at location P0; otherwise is 0.

F12(s, a) to F29(s, a) are like F10 and F11 for different
combinations of the prize location and the distance from each
of the four walls.
For the case where the prize is at location P0, the y -distance
could take into account the wall.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 15 / 17



Problems and Variants of function approximation

This algorithm tends to overfit to current experiences.
“Catastrophic forgetting”.
Solution: remember old ⟨s, a, r , s ′⟩ experiences and to carry
out some steps of action replay

Different function approximations, such as
▶ a decision tree with a linear function at the leaves (regression

tree)
▶ a neural network

could be used, but they requires a representation of the states
and actions.

Use the policy to do more than one-step lookahead (better
estimate of Q(s ′, a′)) – see Chapter 14

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 16 / 17



Evolutionary Algorithms

Idea:
▶ maintain a population of controllers
▶ evaluate each controller by running it in the environment
▶ at each generation, the best controllers are combined to form a

new population of controllers

If there are n states and m actions, there are mn policies.

Experiences are used wastefully: only used to judge the whole
controller. They don’t learn after every step.

Performance is very sensitive to representation of controller.

With function approximation, previous algorithms can get
stuck in local optima.

Evolutionary algorithms can help escape local optima

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 13.3 17 / 17


