On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if

On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- On-policy learning learns the value of the policy being followed.
e.g., act greedily 80% of the time and act randomly 20% of the time
- Why?

On-policy Learning

- Q-learning does off-policy learning: it learns the value of an optimal policy, no matter what it does.
- This could be bad if the exploration policy is dangerous.
- On-policy learning learns the value of the policy being followed.
e.g., act greedily 80% of the time and act randomly 20% of the time
- Why? If the agent is actually going to explore, it may be better to optimize the actual policy it is going to do.
- SARSA uses the experience $\left\langle s, a, r, s^{\prime}, a^{\prime}\right\rangle$ to update $Q[s, a]$.

SARSA

initialize $Q[S, A]$ arbitrarily
observe current state s
select action a
repeat forever:
carry out action a observe reward r and state s^{\prime}
select action a^{\prime} using a policy based on Q
$Q[s, a]:=$

SARSA

initialize $Q[S, A]$ arbitrarily
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}
select action a^{\prime} using a policy based on Q
$Q[s, a]:=Q[s, a]+\alpha\left(r+\gamma Q\left[s^{\prime}, a^{\prime}\right]-Q[s, a]\right)$
$s:=s^{\prime}$
$a:=a^{\prime}$

Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily
$E=\{ \}$
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}

$$
E:=E \cup\left\{\left\langle s, a, r, s^{\prime}\right\rangle\right\}
$$

$Q[s, a]:=$

Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily
$E=\{ \}$
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}

$$
\begin{aligned}
& E:=E \cup\left\{\left\langle s, a, r, s^{\prime}\right\rangle\right\} \\
& Q[s, a]:=Q[s, a]+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]-Q[s, a]\right)
\end{aligned}
$$

repeat for a while:
select $\left\langle s_{1}, a_{1}, r_{1}, s_{1}^{\prime}\right\rangle \in E$
$Q\left[s_{1}, a_{1}\right]:=$

Q-learning with Action Replay

initialize $Q[S, A]$ arbitrarily
$E=\{ \}$
observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}

$$
\begin{aligned}
& E:=E \cup\left\{\left\langle s, a, r, s^{\prime}\right\rangle\right\} \\
& Q[s, a]:=Q[s, a]+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]-Q[s, a]\right)
\end{aligned}
$$

repeat for a while:
select $\left\langle s_{1}, a_{1}, r_{1}, s_{1}^{\prime}\right\rangle \in E$
$Q\left[s_{1}, a_{1}\right]:=Q\left[s_{1}, a_{1}\right]+\alpha\left(r_{1}+\gamma \max _{a_{1}^{\prime}} Q\left[s_{1}^{\prime}, a_{1}^{\prime}\right]-Q\left[s_{1}, a_{1}\right]\right)$
$s:=s^{\prime}$
$a:=a^{\prime}$

Model-based Reinforcement Learning

- Model-based reinforcement learning uses the experiences in a more effective manner.
- It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.

Model-based Reinforcement Learning

- Model-based reinforcement learning uses the experiences in a more effective manner.
- It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.
- Idea: learn the MDP and interleave acting and planning.

Model-based Reinforcement Learning

- Model-based reinforcement learning uses the experiences in a more effective manner.
- It is used when collecting experiences is expensive (e.g., in a robot or an online game); an agent can do lots of computation between each experience.
- Idea: learn the MDP and interleave acting and planning.
- After each experience, update probabilities and the reward, then do some steps of asynchronous value iteration.

Model-based learner

Data Structures: $Q[S, A], T[S, A, S], C[S, A], R[S, A]$ Assign Q, R arbitrarily, $C=0, T=0$ observe current state s repeat forever:
select and carry out action a observe reward r and state s^{\prime}

Model-based learner

Data Structures: $Q[S, A], T[S, A, S], C[S, A], R[S, A]$ Assign Q, R arbitrarily, $C=0, T=0$ observe current state s repeat forever:
select and carry out action a
observe reward r and state s^{\prime}
$T\left[s, a, s^{\prime}\right]:=T\left[s, a, s^{\prime}\right]+1$
$C[s, a]:=C[s, a]+1$
$R[s, a]:=R[s, a]+(r-R[s, a]) / C[s, a]$

Model-based learner

Data Structures: $Q[S, A], T[S, A, S], C[S, A], R[S, A]$ Assign Q, R arbitrarily, $C=0, T=0$ observe current state s repeat forever:
select and carry out action a
observe reward r and state s^{\prime}

$$
T\left[s, a, s^{\prime}\right]:=T\left[s, a, s^{\prime}\right]+1
$$

$$
C[s, a]:=C[s, a]+1
$$

$$
R[s, a]:=R[s, a]+(r-R[s, a]) / C[s, a]
$$

repeat for a while:
select state s_{1}, action a_{1}
$Q\left[s_{1}, a_{1}\right]:=$

Model-based learner

Data Structures: $Q[S, A], T[S, A, S], C[S, A], R[S, A]$ Assign Q, R arbitrarily, $C=0, T=0$ observe current state s repeat forever:
select and carry out action a
observe reward r and state s^{\prime}

$$
\begin{aligned}
& T\left[s, a, s^{\prime}\right]:=T\left[s, a, s^{\prime}\right]+1 \\
& C[s, a]:=C[s, a]+1 \\
& R[s, a]:=R[s, a]+(r-R[s, a]) / C[s, a]
\end{aligned}
$$

repeat for a while:
select state s_{1}, action a_{1}

$$
Q\left[s_{1}, a_{1}\right]:=R\left[s_{1}, a_{1}\right]+\sum_{s_{2}} \frac{T\left[s_{1}, a_{1}, s_{2}\right]}{C\left[s_{1}, a_{1}\right]}\left(\gamma \max _{a_{2}} Q\left[s_{2}, a_{2}\right]\right)
$$

$$
s:=s^{\prime}
$$

Model-based learner

Data Structures: $Q[S, A], T[S, A, S], C[S, A], R[S, A]$ Assign Q, R arbitrarily, $C=0, T=0$ observe current state s repeat forever:
select and carry out action a
observe reward r and state s^{\prime}

$$
\begin{aligned}
& T\left[s, a, s^{\prime}\right]:=T\left[s, a, s^{\prime}\right]+1 \\
& C[s, a]:=C[s, a]+1 \\
& R[s, a]:=R[s, a]+(r-R[s, a]) / C[s, a]
\end{aligned}
$$

repeat for a while:
select state s_{1}, action a_{1}

$$
Q\left[s_{1}, a_{1}\right]:=R\left[s_{1}, a_{1}\right]+\sum_{s_{2}} \frac{T\left[s_{1}, a_{1}, s_{2}\right]}{C\left[s_{1}, a_{1}\right]}\left(\gamma \max _{a_{2}} Q\left[s_{2}, a_{2}\right]\right)
$$

$$
s:=s^{\prime}
$$

What goes wrong with this?

Reinforcement Learning with Features

- Usually we don't want to reason in terms of states, but in terms of features.
- In state-based methods, information about one state cannot be used by similar states.

Reinforcement Learning with Features

- Usually we don't want to reason in terms of states, but in terms of features.
- In state-based methods, information about one state cannot be used by similar states.
- If there are too many parameters to learn, it takes too long.

Reinforcement Learning with Features

- Usually we don't want to reason in terms of states, but in terms of features.
- In state-based methods, information about one state cannot be used by similar states.
- If there are too many parameters to learn, it takes too long.
- Idea: Express the value (Q) function as a function of the features. Most typical is a linear function of the features, or a neural network.

Reinforcement Learning

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

SARSA with Generalization

1: controller SARSA_with_Generalization(Learner, γ)
2: Inputs
3: \quad Learner with operations Learner.add (x, y) and Learner.predict(x).
4: $\quad \gamma \in[0,1]$: discount factor

SARSA with Generalization

1: controller SARSA_with_Generalization(Learner, γ)
2: Inputs
3: \quad Learner with operations Learner.add (x, y) and Learner.predict(x).
4: $\quad \gamma \in[0,1]$: discount factor
5: observe current state s
6: select action a
7: repeat
8: \quad do(a)
9: observe reward r and state s^{\prime}

SARSA with Generalization

1: controller SARSA_with_Generalization(Learner, γ)
2: Inputs
3: \quad Learner with operations Learner.add (x, y) and Learner.predict(x).
4: $\quad \gamma \in[0,1]$: discount factor
5: observe current state s
6: select action a
7: repeat
8: $\quad d o(a)$
9: observe reward r and state s^{\prime}
10: select action a^{\prime} based on Learner.predict $\left(\left(s^{\prime}, a^{\prime}\right)\right)$

SARSA with Generalization

1: controller SARSA_with_Generalization(Learner, γ)
2: Inputs
3: \quad Learner with operations Learner.add (x, y) and Learner.predict (x).
4: $\quad \gamma \in[0,1]$: discount factor
5: observe current state s
6: select action a
7: repeat
8: $\quad d o(a)$
9: observe reward r and state s^{\prime}
10: \quad select action a^{\prime} based on Learner.predict $\left(\left(s^{\prime}, a^{\prime}\right)\right)$
11 Learner.add $\left((s, a), r+\gamma *\right.$ Learner.predict $\left.\left(\left(s^{\prime}, a^{\prime}\right)\right)\right)$

SARSA with Generalization

1: controller SARSA_with_Generalization(Learner, γ)

2:
3: Inputs

Learner with operations Learner.add(x, y) and Learner.predict(x).
4: $\quad \gamma \in[0,1]$: discount factor
5: observe current state s
6: select action a
7: repeat
8: $\quad d o(a)$
9:
10
11:
12:
13:
14: until termination

Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

$$
x:=
$$

Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

$$
x:=x-\eta \frac{d f}{d x}
$$

where η is the step size

Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

$$
x:=x-\eta \frac{d f}{d x}
$$

where η is the step size
To find a local minimum of real-valued function $f\left(x_{1}, \ldots, x_{n}\right)$:

- assign arbitrary values to x_{1}, \ldots, x_{n}
- repeat:
for each x_{i}

$$
x_{i}:=
$$

Review: Gradient descent

To find a (local) minimum of a real-valued function $f(x)$:

- assign an arbitrary value to x
- repeat

$$
x:=x-\eta \frac{d f}{d x}
$$

where η is the step size
To find a local minimum of real-valued function $f\left(x_{1}, \ldots, x_{n}\right)$:

- assign arbitrary values to x_{1}, \ldots, x_{n}
- repeat:
for each x_{i}

$$
x_{i}:=x_{i}-\eta \frac{\partial f}{\partial x_{i}}
$$

Review: Linear Regression

- A linear function of variables x_{1}, \ldots, x_{n} is of the form

$$
\begin{gathered}
f^{\bar{w}}\left(x_{1}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+\cdots+w_{n} x_{n} \\
\bar{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle \text { are weights. }\left(\text { Let } x_{0}=1\right) .
\end{gathered}
$$

- Given a set E of examples.

Example e has input $x_{i}=e_{i}$ for each i and observed value, o_{e} :

$$
\operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(o_{e}-f^{\bar{w}}\left(e_{1}, \ldots, e_{n}\right)\right)^{2}
$$

- Minimizing the error using gradient descent, each example should update w_{i} using:

$$
w_{i}:=
$$

Review: Linear Regression

- A linear function of variables x_{1}, \ldots, x_{n} is of the form

$$
\begin{gathered}
f^{\bar{w}}\left(x_{1}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+\cdots+w_{n} x_{n} \\
\bar{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle \text { are weights. }\left(\text { Let } x_{0}=1\right) .
\end{gathered}
$$

- Given a set E of examples.

Example e has input $x_{i}=e_{i}$ for each i and observed value, o_{e} :

$$
\operatorname{Error}_{E}(\bar{w})=\sum_{e \in E}\left(o_{e}-f^{\bar{w}}\left(e_{1}, \ldots, e_{n}\right)\right)^{2}
$$

- Minimizing the error using gradient descent, each example should update w_{i} using:

$$
w_{i}:=w_{i}-\eta \frac{\partial \operatorname{Error}_{E}(\bar{w})}{\partial w_{i}}
$$

Review: Gradient Descent for Linear Regression

Given E : set of examples over n features each example e has inputs $\left(e_{1}, \ldots, e_{n}\right)$ and output o_{e} :
Assign weights $\bar{w}=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ arbitrarily
repeat:
For each example e in E :

$$
\text { let } \delta=o_{e}-f^{\bar{w}}\left(e_{1}, \ldots, e_{n}\right)
$$

For each weight w_{i} :

$$
w_{i}:=w_{i}+\eta \delta e_{i}
$$

SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_{1}, \ldots, F_{n} are the features of the state and the action.
- So $Q_{\bar{w}}(s, a)=w_{0}+w_{1} F_{1}(s, a)+\cdots+w_{n} F_{n}(s, a)$
- An experience $\left\langle s, a, r, s^{\prime}, a^{\prime}\right\rangle$ provides the "example":
- old predicted value:
- new "observed" value:

SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_{1}, \ldots, F_{n} are the features of the state and the action.
- So $Q_{\bar{w}}(s, a)=w_{0}+w_{1} F_{1}(s, a)+\cdots+w_{n} F_{n}(s, a)$
- An experience $\left\langle s, a, r, s^{\prime}, a^{\prime}\right\rangle$ provides the "example":
- old predicted value: $Q_{\bar{w}}(s, a)$
- new "observed" value:

SARSA with linear function approximation

- One step backup provides the examples that can be used in a linear regression.
- Suppose F_{1}, \ldots, F_{n} are the features of the state and the action.
- So $Q_{\bar{w}}(s, a)=w_{0}+w_{1} F_{1}(s, a)+\cdots+w_{n} F_{n}(s, a)$
- An experience $\left\langle s, a, r, s^{\prime}, a^{\prime}\right\rangle$ provides the "example":
- old predicted value: $Q_{\bar{w}}(s, a)$
- new "observed" value: $r+\gamma Q_{\bar{w}}\left(s^{\prime}, a^{\prime}\right)$
- Treat $r+\gamma Q_{\bar{w}}\left(s^{\prime}, a^{\prime}\right)$ as a new training example for $Q(s, a)$ in linear regression (or other supervised learning algorithm).

SARSA with linear function approximation

Given γ :discount factor; η :step size
Assign weights $\bar{w}=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ arbitrarily observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}
select action a^{\prime} (using a policy based on $Q_{\bar{w}}$)

SARSA with linear function approximation

Given γ :discount factor; η :step size
Assign weights $\bar{w}=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ arbitrarily observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}
select action a^{\prime} (using a policy based on $Q_{\bar{w}}$)
let $\delta=r+\gamma Q_{\bar{w}}\left(s^{\prime}, a^{\prime}\right)-Q_{\bar{w}}(s, a)$

SARSA with linear function approximation

Given γ :discount factor; η :step size
Assign weights $\bar{w}=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ arbitrarily observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}
select action a^{\prime} (using a policy based on $Q_{\bar{w}}$)
let $\delta=r+\gamma Q_{\bar{w}}\left(s^{\prime}, a^{\prime}\right)-Q_{\bar{w}}(s, a)$
For $i=0$ to n

$$
w_{i}:=w_{i}+\eta \delta F_{i}(s, a)
$$

SARSA with linear function approximation

Given γ :discount factor; η :step size
Assign weights $\bar{w}=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ arbitrarily observe current state s
select action a
repeat forever:
carry out action a
observe reward r and state s^{\prime}
select action a^{\prime} (using a policy based on $Q_{\bar{w}}$)
let $\delta=r+\gamma Q_{\bar{w}}\left(s^{\prime}, a^{\prime}\right)-Q_{\bar{w}}(s, a)$
For $i=0$ to n

$$
\begin{aligned}
& w_{i}:=w_{i}+\eta \delta F_{i}(s, a) \\
& s:= s^{\prime} \\
& a:=a^{\prime}
\end{aligned}
$$

Monster Game

Example Features

- $F_{1}(s, a)=1$ if a goes from state s into a monster location and is 0 otherwise.
- $F_{2}(s, a)=1$ if a goes into a wall, is 0 otherwise.
- $F_{3}(s, a)=1$ if a goes toward a prize.
- $F_{4}(s, a)=1$ if the agent is damaged in state s and action a takes it toward the repair station.
- $F_{5}(s, a)=1$ if the agent is damaged and action a goes into a monster location.
- $F_{6}(s, a)=1$ if the agent is damaged.
- $F_{7}(s, a)=1$ if the agent is not damaged.
- $F_{8}(s, a)=1$ if the agent is damaged and there is a prize in direction a.
- $F_{9}(s, a)=1$ if the agent is not damaged and there is a prize in direction a.

Example Features

- $F_{10}(s, a)$ is the distance from the left wall if there is a prize at location P_{0}, and is 0 otherwise.
- $F_{11}(s, a)$ has the value $4-x$, where x is the horizontal position of state s if there is a prize at location P_{0}; otherwise is 0 .
- $F_{12}(s, a)$ to $F_{29}(s, a)$ are like F_{10} and F_{11} for different combinations of the prize location and the distance from each of the four walls.
For the case where the prize is at location P_{0}, the y-distance could take into account the wall.

Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. "Catastrophic forgetting". Solution:

Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. "Catastrophic forgetting".
Solution: remember old $\left\langle s, a, r, s^{\prime}\right\rangle$ experiences and to carry out some steps of action replay

Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. "Catastrophic forgetting".
Solution: remember old $\left\langle s, a, r, s^{\prime}\right\rangle$ experiences and to carry out some steps of action replay
- Different function approximations, such as
- a decision tree with a linear function at the leaves (regression tree)
- a neural network
could be used, but they requires a representation of the states and actions.

Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. "Catastrophic forgetting".
Solution: remember old $\left\langle s, a, r, s^{\prime}\right\rangle$ experiences and to carry out some steps of action replay
- Different function approximations, such as
- a decision tree with a linear function at the leaves (regression tree)
- a neural network
could be used, but they requires a representation of the states and actions.
- Use the policy to do more than one-step lookahead (better estimate of $\left.Q\left(s^{\prime}, a^{\prime}\right)\right)$.

Problems and Variants of function approximation

- This algorithm tends to overfit to current experiences. "Catastrophic forgetting".
Solution: remember old $\left\langle s, a, r, s^{\prime}\right\rangle$ experiences and to carry out some steps of action replay
- Different function approximations, such as
- a decision tree with a linear function at the leaves (regression tree)
- a neural network
could be used, but they requires a representation of the states and actions.
- Use the policy to do more than one-step lookahead (better estimate of $\left.Q\left(s^{\prime}, a^{\prime}\right)\right)$.
For example, compute expected value by generating samples of the rest of a game.

Evolutionary Algorithms

- In state-based MDPs and reinforcement learning, all local optima are global optima.

Evolutionary Algorithms

- In state-based MDPs and reinforcement learning, all local optima are global optima.
- With function approximation, MDP/LR algorithms can get stuck in local optima that can be arbitrarily worse that global optima

Evolutionary Algorithms

- In state-based MDPs and reinforcement learning, all local optima are global optima.
- With function approximation, MDP/LR algorithms can get stuck in local optima that can be arbitrarily worse that global optima
- Evolutionary algorithms can help escape local optima
- Idea:
- maintain a population of controllers (e.g., SARSA with function approximation
- evaluate each controller by running it in the environment
- at each generation, the best controllers are combined to form a new population of controllers

Evolutionary Algorithms

- In state-based MDPs and reinforcement learning, all local optima are global optima.
- With function approximation, MDP/LR algorithms can get stuck in local optima that can be arbitrarily worse that global optima
- Evolutionary algorithms can help escape local optima
- Idea:
- maintain a population of controllers (e.g., SARSA with function approximation
- evaluate each controller by running it in the environment
- at each generation, the best controllers are combined to form a new population of controllers
- Performance is sensitive to representation of controller, and ways to combine them.

