$Q[s, a]$ does not specify what an agent should do. At each step, the agent could

- **exploit** what it has found to get higher rewards.
 In state s, it can do an action a that maximizes $Q[s, a]$.
- **explore** to build a better estimate of the Q-function
 It could select an action at random at each time.

The theoretical properties of the exploration-exploitation tradeoff are often studied in for **bandits**.

(A one-armed bandit is slot-machine / poker-machine.)
Each machine has its own distribution of payouts.
The action is to choose which machine to play;
— the agent repeatedly chooses an action from the same state.
optimism in the face of uncertainty: initialize Q to values that encourage exploration, meaning use an overestimate of Q-function.

▶ Takes a long time to converge.
▶ If actions are stochastic, a good action could get a bad outcome at random, and then it is never selected again.

ϵ-greedy strategy: choose random action with probability ϵ
choose a best action with probability $1 - \epsilon$.

Problem:
▶ Very bad actions get selected as much as promising actions that are not maximal.
Softmax Exploration

- Actions with a higher Q-value are more likely to be selected.

Softmax action selection: in state s, choose a with probability

$$P(a) = \frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

where $\tau > 0$ is a *temperature*.

- How much more likely is a to be chosen than a'?

$$P(a \text{ is selected}) = \frac{e^{Q[s,a]/\tau}}{e^{Q[s,a']/\tau}} = e^{(Q[s,a] - Q[s,a'])/\tau} = \left(e^{1/\tau}\right)^{(Q[s,a] - Q[s,a'])}$$

<table>
<thead>
<tr>
<th>τ</th>
<th>$e^{1/\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.105</td>
</tr>
<tr>
<td>1</td>
<td>2.718</td>
</tr>
<tr>
<td>0.1</td>
<td>22026.5</td>
</tr>
</tbody>
</table>
Upper Confidence Bound

- Softmax selection doesn't take into account how many times an action has been tried, which affects how good the Q estimate is.
- The upper confidence bound is an estimate of the expected value such that it is be very unlikely that the actual value is greater than this.
- The upper confidence bound $UCB1$ is:

$$U CB1(s, a) = Q[s, a] + C \sqrt{\frac{\log N(s)}{N[s, a]}}$$

where

- $N[s, a]$ is how many times action a has been selected in state s
- $N(s) = \sum_a N[s, a]$ is how many times state s has been visited.
- C is a constant that depends on the magnitude of the Q-values. If the values are all in range $[0,1]$, then $C = \sqrt{2}$ has good theoretical properties

- A agent chooses action a with the highest $UCB1(s, a)$ value.
In Thompson sampling, the agent selects a value from the posterior distribution of the \(Q \)-values.

If the values are all 0 or 1 (e.g., win/loss), sample from the beta-distribution.

If the return is a real number, you could assume the distribution is a Gaussian, parameterized by the mean and the variance. For each state, choose the action \(a \) that maximizes

\[
Q[s, a] + C \frac{\text{randn}()} \sqrt{N[s, a]}
\]

where \(\text{randn}() \) returns a random number using the standard normal distribution (mean is 0, variance is 1). \(C \) is chosen to reflect the scale of the \(Q \)-values.
Use a stochastic policy \(\pi(a | s) \)

\[
V^\pi(s) = \sum_a \pi(a | s) Q^\pi(s, a)
\]

For an MDP, a stochastic policy is optimal if and only if all of the actions with a non-zero probability for a state have the same Q-value for that state, and that value is higher than the Q-value for any other action.

How to update distribution given feedback? See Chapter 14.
Evaluating Reinforcement Learning Algorithms

Each algorithm stops exploring at 100,000 steps.

- **Alternative #1**: plot mean reward received, but it is noisy
- **Alternative #2**: plot discounted reward for each time step, but it can only be evaluated in retrospect.