
Exploration and Exploitation

Q[s, a] does not specify what an agent should do.

At each step, the agent could

exploit what it has found to get higher rewards.
In state s, it can do an action a that maximizes Q[s, a].

explore to build a better estimate of the Q-function
It could select an action at random at each time.

The theoretical properties of the exploration-exploitation tradeoff
are often studied in for bandits.
(A one-armed bandit is slot-machine / poker-machine.)
Each machine has its own distribution of payouts.
The action is to choose which machine to play;
— the agent repeatedly chooses an action from the same state.
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Exploration Strategies

optimism in the face of uncertainty: initialize Q to values that
encourage exploration, meaning

use an overestimate of
Q-function.
▶ Takes a long time to converge.
▶ If actions are stochastic, a good action could get a bad

outcome at random, and then it is never selected again.

ϵ-greedy strategy: choose random action with probability ϵ
choose a best action with probability 1− ϵ.
Problem:
▶ Very bad actions get selected as much as promising actions

that are not maximal.
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Softmax Exploration

Actions with a higher Q-value are more likely to be selected.
Softmax action selection: in state s, choose a with probability

eQ[s,a]/τ∑
a e

Q[s,a]/τ

where τ > 0 is a temperature.

How much more likely is a to be chosen than a′?

P(a is selected)

P(a′ is selected)
=

eQ[s,a]/τ

eQ[s,a′]/τ

= e(Q[s,a]−Q[s,a′])/τ

= (e1/τ )(Q[s,a]−Q[s,a′])

τ e1/τ

10 1.105
1 2.718
0.1 22026.5
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Upper Confidence Bound

Softmax selection doesn’t take into account how many times
an action has been tried, which affects how good the Q
estimate is.

The upper confidence bound is an estimate of the expected
value such that it is be very unlikely that the actual value is
greater than this.
The upper confidence bound UCB1 is:

UCB1(s, a) = Q[s, a] + C ∗

√
logN(s)

N[s, a]

where
▶ N[s, a] is how many times action a has been selected in state s
▶ N(s) =

∑
a N[s, a] is how many times state s has been visited.

▶ C is a constant that depends on the magnitude of the
Q-values. If the values are all in range [0,1], then C =

√
2 has

good theoretical properties

A agent chooses action a with the highest UCB1(s, a) value.
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Thompson sampling

In Thompson sampling, the agent selects a value from the
posterior distribution of the Q-values.

If the values are all 0 or 1 (e.g., win/loss), sample from the
beta-distribution.

If the return is a real number, you could assume the
distribution is a Gaussian, parameterized by the mean and the
variance. For each state, choose the action a that maximizes

Q[s, a] + C ∗ randn()√
N[s, a]

where randn() returns a random number using the standard
normal distribution (mean is 0, variance is 1).
C is chosen to reflect the scale of the Q-values.
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Stochastic Policy

Use a stochastic policy π(a | s)
V π(s) =

∑
a π(a | s)Qπ(s, a)

For an MDP, a stochastic policy is optimal if and only if
all of the actions with a non-zero probability for a state have
the same Q-value for that state, and that value is higher than
the Q-value for any other action.

How to update distribution given feedback? See Chapter 14.
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Evaluating Reinforcement Learning Algorithms

0 50 100 150 200
Number of steps (thousands)

-10000
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Each algorithm stops exploring at 100,000 steps.

Alternative #1: plot mean reward received, but it is noisy

Alternative #2: plot discounted reward for each time step,
but it can only be evaluated in retrospect.
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