At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning
Reinforcement Learning

What should an agent do given:

- **Prior knowledge** possible states of the world
 possible actions

- **Observations** current state of world
 immediate reward / punishment

- **Goal** act to maximize accumulated (discounted) reward

- Like decision-theoretic planning, except model of dynamics
 and model of reward not given.
Reinforcement Learning Examples

- Game - reward winning, punish losing
- Dog - reward obedience, punish destructive behavior
- Robot - reward task completion, punish dangerous behavior
Assume there is a sequence of experiences:

\[\text{state, action, reward, state, action, reward, ...} \]

The sequence of experiences up to the time the agent has to choose its action is its history.

The agent has to choose its action as a function of its history.

At any time it must decide whether to do:

- explore to gain more knowledge
- exploit knowledge it has already discovered
Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was responsible for it being scolded at the end of the day.
- The long-term effect of an action depend on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.
- The explore-exploit dilemma: at each time should the agent be greedy or inquisitive?
Reinforcement learning: main approaches

- search through a space of policies (controllers)
- learn a model consisting of state transition function $P(s' \mid a, s)$ and reward function $R(s, a)$; solve this as an MDP.
- learn $Q^*(s, a)$, use this to guide action.
Recall: Asynchronous VI for MDPs, storing $Q[s, a]$

(If we knew the model:)

Initialize $Q[S, A]$ arbitrarily
Repeat forever:

- Select state s, action a
- $Q[s, a] := R(s, a) + \gamma \sum_{s'} P(s' | s, a) \left(\max_{a'} Q[s', a'] \right)$
initialize $Q[S, A]$ arbitrarily
observe current state s

repeat forever:
 select and carry out an action a
 observe reward r and state s'
 $Q[s, a] := r + \gamma \max_{a'} Q[s', a']$
 $s := s'$
Suppose we have a sequence of values:

\[v_1, v_2, v_3, \ldots \]

and want a running estimate of the average of the first \(k \) values:

\[A_k = \frac{v_1 + \cdots + v_k}{k} \]
Temporal Differences (cont)

- Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \cdots + v_{k-1} + v_k}{k}$$

$$= \frac{(k-1)A_{k-1} + v_k}{k}$$

Let $\alpha_k = \frac{1}{k}$, then

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k(v_k - A_{k-1})$$

“TD formula”

- Often we use this update with α fixed.

- We can guarantee convergence to average if

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

- E.g., $\alpha_k = 10/(9 + k)$ treats more recent experiences more, but converges to average.
Q-learning

- **Idea:** store \(Q[State, Action] \); update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).

- Suppose the agent has an experience \(\langle s, a, r, s' \rangle \)

- This provides one piece of data to update \(Q[s, a] \).

- An experience \(\langle s, a, r, s' \rangle \) provides a new estimate for the value of \(Q^*(s, a) \):

\[
r + \gamma \max_{a'} Q[s', a']
\]

which can be used in the TD formula giving:

\[
Q[s, a] := Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)
\]
Q-learning

initialize $Q[S, A]$ arbitrarily
observe current state s
repeat forever:
 select and carry out an action a
 observe reward r and state s'
 $Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$
 $s := s'$
Properties of Q-learning

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.
- But what should the agent do?
 - exploit: when in state s, select an action that maximizes $Q[s, a]$
 - explore: select another action
Problems with Q-learning

- It does one backup between each experience.
 - Is this appropriate for a robot interacting with the real world?
 - An agent can make better use of the data by
 - remember previous experiences and use these to update model (action replay)
 - building a model, and using MDP methods to determine optimal policy.
 - doing multi-step backups

- It learns separately for each state.