Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:

@ Explain the relationship between decision-theoretic planning
(MDPs) and reinforcement learning
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Learning Objectives - Reinforcement Learning

At the end of the class you should be able to:
@ Explain the relationship between decision-theoretic planning
(MDPs) and reinforcement learning

@ Implement basic state-based reinforcement learning
algorithms: Q-learning
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Reinforcement Learning

What should an agent do given:

@ Prior knowledge

@ Observations

o Goal
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Reinforcement Learning

What should an agent do given:

@ Prior knowledge possible states of the world
possible actions

@ Observations current state of world
immediate reward / punishment

e Goal act to maximize accumulated (discounted) reward
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Reinforcement Learning

What should an agent do given:

@ Prior knowledge possible states of the world
possible actions

@ Observations current state of world
immediate reward / punishment

e Goal act to maximize accumulated (discounted) reward

o Like decision-theoretic planning, except model of dynamics
and model of reward not given.
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Reinforcement Learning Examples

o Game -
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Reinforcement Learning Examples

@ Game - reward winning, punish losing
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Reinforcement Learning Examples

@ Game - reward winning, punish losing

@ Dog - reward obedience, punish destructive behavior
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Reinforcement Learning Examples

@ Game - reward winning, punish losing
@ Dog - reward obedience, punish destructive behavior

@ Robot - reward task completion, punish dangerous behavior
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Experiences

@ Assume there is a sequence of experiences:

state, action, reward, state, action, reward, ....
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Experiences

@ Assume there is a sequence of experiences:

state, action, reward, state, action, reward, ....

@ The sequence of experiences up to the time the agent has to
choose its action is its history

@ The agent has to choose its action as a function of its history.
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Experiences

@ Assume there is a sequence of experiences:

state, action, reward, state, action, reward, ....

@ The sequence of experiences up to the time the agent has to
choose its action is its history

@ The agent has to choose its action as a function of its history.

@ At any time it must decide whether to do.

P explore to gain more knowledge
» exploit knowledge it has already discovered
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Why is reinforcement learning hard?

@ What actions are responsible for a reward may have occurred
a long time before the reward was received.
» The dog is expected to determine that eating the shoe at the
start of the day is what was resposible for it being scolded at
the end of the day.
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» The dog is expected to determine that eating the shoe at the
start of the day is what was resposible for it being scolded at
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@ The long-term effect of an action depend on what the agent
will do in the future.

» |t might be okay for a robot to create a mess as long as it
cleans up after itself.
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Why is reinforcement learning hard?

@ What actions are responsible for a reward may have occurred
a long time before the reward was received.

» The dog is expected to determine that eating the shoe at the
start of the day is what was resposible for it being scolded at
the end of the day.

@ The long-term effect of an action depend on what the agent
will do in the future.

» |t might be okay for a robot to create a mess as long as it
cleans up after itself.

@ The explore-exploit dilemma: at each time should the agent
be greedy or inquisitive?
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Reinforcement learning: main approaches

@ search through a space of policies (controllers)
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Reinforcement learning: main approaches

@ search through a space of policies (controllers)

@ learn a model consisting of state transition function P(s'|a, s)
and reward function R(s, a); solve this an an MDP.
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Reinforcement learning: main approaches

@ search through a space of policies (controllers)

@ learn a model consisting of state transition function P(s'|a, s)
and reward function R(s, a); solve this an an MDP.

o learn Q*(s, a), use this to guide action.
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Recall: Asynchronous VI for MDPs, storing Q[s, a]

(If we knew the model:)

Initialize Q[S, A] arbitrarily
Repeat forever:

@ Select state s, action a

o Q[s,a] :=R(s,a) +vY_ P(s's, a) <ma§x Q[s, a']>

s/
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Asynchronous VI for Deterministic RL

initialize Q[S, A] arbitrarily
observe current state s
repeat forever:
select and carry out an action a
observe reward r and state s’
What do we know now?
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Asynchronous VI for Deterministic RL

initialize Q[S, A] arbitrarily

observe current state s

repeat forever:
select and carry out an action a
observe reward r and state s’
Q[s,a] :=r +ymaxy Q[s, &']
s: =g
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Computing Averages: Temporal Differences

@ Suppose we have a sequence of values:

Vi, Vo, V3,...

and want a running estimate of the average of the first k
values:

Vit v

AL =
k k
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Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+oo Ve vk
k

A, =
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Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+oo Ve vk
A =
k
(k—1)Ax 1+ vk
k

Let oy = % then
A =

Artificial Intelligence 3e, Lecture 13.1

© 2023 D. L. Poole and A. K. Mackworth



Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+oo Ve vk

A =
k k
(kK =1)Ak1 + w
N k
Let oy = % then
Ak = (]. — Ock)Ak_l + o Vi
= Aic1+oap(vie — Ax—1)

“TD formula”
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Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+oo Ve vk
k
(k—1)Ax 1+ vk
k

Let oy = % then
= (1 — ak)Ak—1 + akvk
= Aic1+oap(vie — Ax—1)
“TD formula”
@ Often we use this update with « fixed.
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Temporal Differences (cont)
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Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+oo Ve vk

A =
k k
(kK =1)Ak1 + w
N k
Let oy = % then
Ak = (]. — Ock)Ak_l + o Vi
= Aic1+oap(vie — Ax—1)

“TD formula”
@ Often we use this update with « fixed.

e We can guarantee convergence to average if
S ak=o00and Y32, a2 < oo
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Temporal Differences (cont)

@ Suppose we know Ai_1 and a new value v, arrives:
vi+ o Ve vk

A =
k k
(kK =1)Ak1 + w
N k
Let oy = % then
Ak = (]. — Ock)Ak_l + o Vi
= Aic1+oap(vie — Ax—1)

“TD formula”

@ Often we use this update with « fixed.

e We can guarantee convergence to average if
S ak=o00and Y32, a2 < oo

e E.g., ay =10/(9 + k) treats more recent experiences more,
but converges to average.
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o Idea: store Q[State, Action]; update this as in asynchronous
value iteration, but using experience (empirical probabilities
and rewards).
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o Idea: store Q[State, Action]; update this as in asynchronous
value iteration, but using experience (empirical probabilities
and rewards).

@ Suppose the agent has an experience (s, a, r,s’)
@ This provides one piece of data to update Q[s, a].

@ An experience (s, a, r,s’) provides a new estimate for the
value of Q*(s, a):

which can be used in the TD formula giving:
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@ An experience (s, a, r,s’) provides a new estimate for the
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r +~ymax Q[s, a']
a/

which can be used in the TD formula giving:
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o Idea: store Q[State, Action]; update this as in asynchronous
value iteration, but using experience (empirical probabilities
and rewards).

@ Suppose the agent has an experience (s, a, r,s’)
@ This provides one piece of data to update Q[s, a].

@ An experience (s, a, r,s’) provides a new estimate for the
value of Q*(s, a):

r +~ymax Q[s, a']
a/
which can be used in the TD formula giving:

Q[s,a] := Q[s,a] + « (r + 7y max Qls', d'] — Q[s, a])
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initialize Q[S, A] arbitrarily
observe current state s
repeat forever:
select and carry out an action a
observe reward r and state s’
Q[s, a] := Ql[s,a] + a(r + ymaxy Q[s,a'] — Q[s, a])
s:=5s
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Properties of Q-learning

@ Q-learning converges to an optimal policy, no matter what the
agent does, as long as it tries each action in each state
enough.

@ But what should the agent do?

» exploit: when in state s,

» explore:
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Properties of Q-learning

@ Q-learning converges to an optimal policy, no matter what the
agent does, as long as it tries each action in each state
enough.

@ But what should the agent do?

P exploit: when in state s, select an action that maximizes
Q[s, a]

» explore: select another action
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Problems with Q-learning

@ It does one backup between each experience.
» |s this appropriate for a robot interacting with the real world?
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Problems with Q-learning

@ It does one backup between each experience.

» |s this appropriate for a robot interacting with the real world?

» An agent can make better use of the data by
— remember previous experiences and use these to update
model (action replay)
— building a model, and using MDP methods to determine
optimal policy.
— doing multi-step backups

@ It learns separately for each state.
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