At the end of the class you should be able to:

• Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning

At the end of the class you should be able to:

- Explain the relationship between decision-theoretic planning (MDPs) and reinforcement learning
- Implement basic state-based reinforcement learning algorithms: Q-learning

- Prior knowledge
- Observations
- Goal

- Prior knowledge possible states of the world possible actions
- Observations
- Goal

- Prior knowledge possible states of the world possible actions
- Observations current state of world immediate reward / punishment
- Goal

- Prior knowledge possible states of the world possible actions
- Observations current state of world immediate reward / punishment
- Goal act to maximize accumulated (discounted) reward

< 🗆 .

- Prior knowledge possible states of the world possible actions
- Observations current state of world immediate reward / punishment
- Goal act to maximize accumulated (discounted) reward
- Like decision-theoretic planning, except model of dynamics and model of reward not given.

• Game - reward winning, punish losing

- Game reward winning, punish losing
- Dog -

- Game reward winning, punish losing
- Dog reward obedience, punish destructive behavior

< 🗆 I

- Game reward winning, punish losing
- Dog reward obedience, punish destructive behavior
- Robot -

< 🗆 I

- Game reward winning, punish losing
- Dog reward obedience, punish destructive behavior
- Robot reward task completion, punish dangerous behavior

< 🗆 .

state, action, reward, state, action, reward,

state, action, reward, state, action, reward,

- The sequence of experiences up to the time the agent has to choose its action is its history
- The agent has to choose its action as a function of its history.

```
state, action, reward, state, action, reward, ....
```

- The sequence of experiences up to the time the agent has to choose its action is its history
- The agent has to choose its action as a function of its history.
- At any time it must decide whether to do.

< 🗆 .

```
state, action, reward, state, action, reward, ....
```

- The sequence of experiences up to the time the agent has to choose its action is its history
- The agent has to choose its action as a function of its history.
- At any time it must decide whether to do.
 - explore to gain more knowledge
 - exploit knowledge it has already discovered

Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was resposible for it being scolded at the end of the day.

Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was resposible for it being scolded at the end of the day.
- The long-term effect of an action depend on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.

Why is reinforcement learning hard?

- What actions are responsible for a reward may have occurred a long time before the reward was received.
 - The dog is expected to determine that eating the shoe at the start of the day is what was resposible for it being scolded at the end of the day.
- The long-term effect of an action depend on what the agent will do in the future.
 - It might be okay for a robot to create a mess as long as it cleans up after itself.
- The explore-exploit dilemma: at each time should the agent be greedy or inquisitive?

• search through a space of policies (controllers)

- search through a space of policies (controllers)
- learn a model consisting of state transition function P(s'|a, s)and reward function R(s, a); solve this an an MDP.

< 🗆 I

- search through a space of policies (controllers)
- learn a model consisting of state transition function P(s'|a, s) and reward function R(s, a); solve this an an MDP.
- learn $Q^*(s, a)$, use this to guide action.

(If we knew the model:)

Initialize Q[S, A] arbitrarily Repeat forever:

• Select state s, action a

•
$$Q[s,a] := R(s,a) + \gamma \sum_{s'} P(s'|s,a) \left(\max_{a'} Q[s',a'] \right)$$

< 🗆 I

initialize Q[S, A] arbitrarily observe current state *s* **repeat forever:**

> select and carry out an action *a* observe reward *r* and state *s' What do we know now?*

Image: Ima

initialize Q[S, A] arbitrarily observe current state *s* **repeat forever:**

select and carry out an action *a* observe reward *r* and state *s'* $Q[s, a] := r + \gamma \max_{a'} Q[s', a']$ s := s' • Suppose we have a sequence of values:

 v_1, v_2, v_3, \ldots

and want a running estimate of the average of the first k values:

$$A_k = \frac{v_1 + \dots + v_k}{k}$$

< 🗆 I

=

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \dots + v_{k-1} + v_k}{k}$$

Image: Ima

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_k = \frac{v_1 + \dots + v_{k-1} + v_k}{k}$$
$$= \frac{(k-1)A_{k-1} + v_k}{k}$$
on = 1 then

Let $\alpha_k = \frac{1}{k}$, then

$$A_k =$$

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_{k} = \frac{v_{1} + \dots + v_{k-1} + v_{k}}{k}$$
$$= \frac{(k-1)A_{k-1} + v_{k}}{k}$$

Let $\alpha_k = \frac{1}{k}$, then $A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$ $= A_{k-1} + \alpha_k (v_k - A_{k-1})$

"TD formula"

Image: Ima

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_{k} = \frac{v_{1} + \dots + v_{k-1} + v_{k}}{k}$$
$$= \frac{(k-1)A_{k-1} + v_{k}}{k}$$

Let
$$\alpha_k = \frac{1}{k}$$
, then
 $A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$
 $= A_{k-1} + \alpha_k (v_k - A_{k-1})$

"TD formula"

• Often we use this update with α fixed.

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_{k} = \frac{v_{1} + \dots + v_{k-1} + v_{k}}{k}$$
$$= \frac{(k-1)A_{k-1} + v_{k}}{k}$$

Let
$$\alpha_k = \frac{1}{k}$$
, then
 $A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$
 $= A_{k-1} + \alpha_k (v_k - A_{k-1})$

"TD formula"

- \bullet Often we use this update with α fixed.
- We can guarantee convergence to average if

• Suppose we know A_{k-1} and a new value v_k arrives:

$$A_{k} = \frac{v_{1} + \dots + v_{k-1} + v_{k}}{k}$$
$$= \frac{(k-1)A_{k-1} + v_{k}}{k}$$

Let
$$\alpha_k = \frac{1}{k}$$
, then
 $A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$
 $= A_{k-1} + \alpha_k (v_k - A_{k-1})$

"TD formula"

- Often we use this update with α fixed.
- We can guarantee convergence to average if $\sum_{k=1}^{\infty} \alpha_k = \infty$ and $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$.

Image: Ima

• Suppose we know A_{k-1} and a new value v_k arrives:

$$egin{array}{rcl} A_k &=& rac{v_1 + \cdots + v_{k-1} + v_k}{k} \ &=& rac{(k-1)A_{k-1} + v_k}{k} \end{array}$$

Let
$$\alpha_k = \frac{1}{k}$$
, then
 $A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k$
 $= A_{k-1} + \alpha_k (v_k - A_{k-1})$

"TD formula"

- Often we use this update with α fixed.
- We can guarantee convergence to average if $\sum_{k=1}^{\infty} \alpha_k = \infty$ and $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$.
- E.g., α_k = 10/(9 + k) treats more recent experiences more, but converges to average.

• Idea: store Q[State, Action]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).

- Idea: store *Q*[*State*, *Action*]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience (s, a, r, s') provides a new estimate for the value of Q*(s, a):

which can be used in the TD formula giving:

- Idea: store *Q*[*State*, *Action*]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience (s, a, r, s') provides a new estimate for the value of Q*(s, a):

 $r + \gamma \max_{a'} Q[s', a']$

which can be used in the TD formula giving:

- Idea: store *Q*[*State*, *Action*]; update this as in asynchronous value iteration, but using experience (empirical probabilities and rewards).
- Suppose the agent has an experience $\langle s, a, r, s' \rangle$
- This provides one piece of data to update Q[s, a].
- An experience (s, a, r, s') provides a new estimate for the value of Q*(s, a):

 $r + \gamma \max_{a'} Q[s', a']$

which can be used in the TD formula giving:

$$Q[s, a] := Q[s, a] + \alpha \left(r + \gamma \max_{a'} Q[s', a'] - Q[s, a] \right)$$

< 🗆 .

initialize Q[S, A] arbitrarily observe current state *s* **repeat forever:**

select and carry out an action *a* observe reward *r* and state *s'* $Q[s, a] := Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$ s := s'

< 🗆 .

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.
- But what should the agent do?
 - exploit: when in state s,

explore:

- Q-learning converges to an optimal policy, no matter what the agent does, as long as it tries each action in each state enough.
- But what should the agent do?
 - exploit: when in state s, select an action that maximizes Q[s, a]
 - explore: select another action

• It does one backup between each experience.

Is this appropriate for a robot interacting with the real world?

< 🗆 .

• It does one backup between each experience.

- Is this appropriate for a robot interacting with the real world?
- An agent can make better use of the data by

• It does one backup between each experience.

- Is this appropriate for a robot interacting with the real world?
- An agent can make better use of the data by

- remember previous experiences and use these to update model (action replay)

— building a model, and using MDP methods to determine optimal policy.

doing multi-step backups

• It learns separately for each state.