Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- finite and fixed number of steps finite horizon

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards
- the world is fully observable?

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

- Would you prefer \$1000 today or \$1000 next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

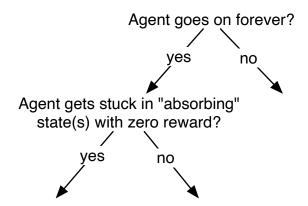
- How would you compare the following sequences of rewards (per week):
 - A: \$1000000, \$0, \$0, \$0, \$0, \$0, ...
 - B: \$1000, \$1000, \$1000, \$1000, ...
 - C: \$1000, \$0, \$0, \$0, \$0,...
 - D: \$1, \$1, \$1, \$1, \$1,...
 - E: \$1, \$2, \$3, \$4, \$5,...

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, ...$ in time. What utility should be assigned? "Return" or "value"

• total reward
$$V = \sum_{i=1}^{\infty} r_i$$

• average reward $V = \lim_{n \to \infty} (r_1 + \dots + r_n)/n$

~



Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time.

- discounted return $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$
 - γ is the discount factor $0 \leq \gamma \leq 1$.

Properties of the Discounted Rewards

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

= $r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

• How is the infinite future valued compared to immediate rewards?

$$\frac{1 + \gamma + \gamma^2 + \gamma^3 + \dots = 1/(1 - \gamma)}{\text{Therefore }} \frac{\text{minimum reward}}{1 - \gamma} \leq V_t \leq \frac{\text{maximum reward}}{1 - \gamma}$$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \cdots + \gamma^{k-1} r_k) = \gamma^k V_{k+1}$$

9/31

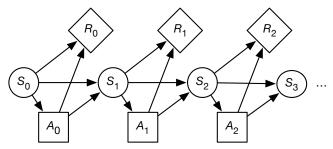
- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

 $P(S_{t+1} | S_0, A_0, \dots, S_t, A_t) = P(S_{t+1} | S_t, A_t)$

 $P(s' \mid s, a)$ is the probability that the agent will be in state s' immediately after doing action a in state s.

• The dynamics is stationary if the distribution is the same for each time point.

• A Markov decision process augments a Markov chain with actions and rewards:



< 🗆 .

An MDP consists of:

- set S of states.
- set A of actions.
- $P(S_{t+1} | S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t)$ specifies the expected reward at time *t*. R(s, a) is the expected reward of doing *a* in state *s*
- γ is discount factor.

Example: to party or relax?

Each week Sam has to decide whether to party or relax:

- States: {*healthy*, *sick*}
- Actions: {*relax*, *party*}
- Dynamics:

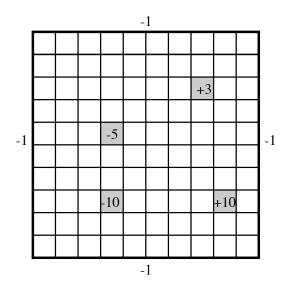
State	Action	P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
healthy sick sick	party	0.1

• Reward:

State	Action	Reward
healthy	relax	7
healthy	party	10
sick	relax	0
sick	party	2

13 / 31

Example: Simple Grid World



14 / 31

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- The robot gets +10 or +3 in the state, then it stays there getting no reward. These are absorbing states.
 - The robot will eventually reach an absorbing state.
 - indefinite horizon

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

[This lecture only considers FOMDPs. POMDPS are much harder to solve.] • A stationary policy is a function:

 $\pi: S \to A$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- An MDP with stationary dynamics and rewards with infinite or indefinite horizon, always has an stationary policy that is optimal.

(A randomized policy or a non-stationary policy is never better than a stationary policy.)

Each week *Sam* has to decide whether to party or relax each weekend:

- States: { *healthy*, *sick* }
- Actions: {*relax*, *party*}

How many stationary policies are there? What are they?

For the grid world with 100 states and 4 actions, how many stationary policies are there?

Given a policy π :

- Q^π(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{\pi}(s')$$

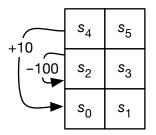
- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V^{*}(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$
$$\pi^*(s) = \arg \max_{a} Q^*(s,a)$$

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- Set V₀ arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

The error reduces proportionally to $\frac{\gamma^k}{1-\gamma}$

Tiny MDP Example: 6 states, 4 actions



Actions (if crash, stay still with a reward of -1)

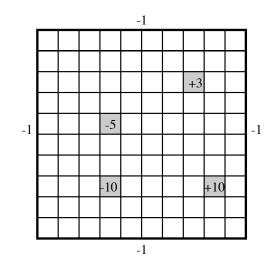
move right

move left, except as above.

▲ up risky: *P*(*up*)=0.8, *P*(*left*)=0.1, *P*(*right*)=0.1

up carefully: go up with extra reward of -1
AlPython: python -i mdpExamples.py
MDPtiny(discount=0.9).show()

Example: Simple Grid World



AlPython: python -i mdpExamples.py grid(discount=0.9).show()

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- It can either store V[s] or Q[s, a].

< 🗆 .

• Repeat forever:

Select state s

$$V[s] \leftarrow \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V[s'] \right)$$

Image: Ima

- Repeat forever:

Image: Ima

- Set π_0 arbitrarily, let i = 0
- Repeat:

• evaluate
$$Q^{\pi_i}(s, a)$$

 $\blacktriangleright \quad \text{let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_i}(s, a)$

• until
$$\pi_i(s) = \pi_{i-1}(s)$$

Evaluating $Q^{\pi_i}(s, a)$ means finding a solution to a set of $|S| \times |A|$ linear equations with $|S| \times |A|$ unknowns.

It can also be approximated iteratively.

Set $\pi[s]$ arbitrarily Set Q[s, a] arbitrarily Repeat forever:

• Repeat for a while:

Select state s, action a

$$\blacktriangleright \quad Q[s,a] \leftarrow R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) Q[s',\pi[s']]$$

• $\pi[s] \leftarrow \operatorname{argmax}_a Q[s, a]$

Image: Ima

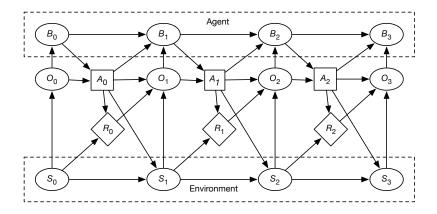
$$Q^*(s, a) = \sum_{s'} P(s' \mid a, s) \left(R(s, a, s') + \gamma V^*(s') \right)$$
$$= R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s, a)$$
$$\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

- I I I

Partially Observable MDP (POMDP)



 B_i agent's belief state at time *i*. A_i agent's action. O_i is what the agent observes. R_i is the reward. S_i is the world state.

Image: Ima