Agents as Processes

Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- finite and fixed number of steps finite horizon

What should an agent do when

 it gets rewards (including punishments) and tries to maximize its rewards received

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards
- the world is fully observable?

Initial Assumptions

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Utility and time

- Would you prefer \$1000 today or \$1000 next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

Utility and time

 How would you compare the following sequences of rewards (per week):

```
A: $1000000, $0, $0, $0, $0, $0,...
```

```
B: $1000, $1000, $1000, $1000, $1000,...
```

```
C: $1000, $0, $0, $0, $0,...
```

```
D: $1, $1, $1, $1, ...
```


Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ in time. What utility should be assigned? "Return" or "value"

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, ...$ in time. What utility should be assigned? "Return" or "value"

- total reward $V = \sum_{i=1}^{\infty} r_i$
- average reward $V = \lim_{n \to \infty} (r_1 + \dots + r_n)/n$

Average vs Accumulated Rewards

Rewards and Values

Suppose the agent receives a sequence of rewards $r_1, r_2, r_3, r_4, ...$ in time.

• discounted return $V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$ γ is the discount factor $0 \le \gamma \le 1$.

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$
$$=$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

ullet If V_t is the value obtained from time step t

$$V_t =$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

ullet If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

ullet If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

• The discounted return for rewards $r_1, r_2, r_3, r_4, \ldots$ is

$$V = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots = r_1 + \gamma (r_2 + \gamma (r_3 + \gamma (r_4 + \dots)))$$

• If V_t is the value obtained from time step t

$$V_t = r_t + \gamma V_{t+1}$$

 How is the infinite future valued compared to immediate rewards?

$$1 + \gamma + \gamma^2 + \gamma^3 + \dots = 1/(1 - \gamma)$$

Therefore $\frac{\text{minimum reward}}{1 - \gamma} \leq V_t \leq \frac{\text{maximum reward}}{1 - \gamma}$

• We can approximate V with the first k terms, with error:

$$V - (r_1 + \gamma r_2 + \dots + \gamma^{k-1} r_k) = \gamma^k V_{k+1}$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

$$P(S_{t+1} | S_0, A_0, \dots, S_t, A_t) =$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_i is state at time i, and A_i is the action at time i:

$$P(S_{t+1} \mid S_0, A_0, \dots, S_t, A_t) = P(S_{t+1} \mid S_t, A_t)$$

 $P(s' \mid s, a)$ is the probability that the agent will be in state s' immediately after doing action a in state s.

 The dynamics is stationary if the distribution is the same for each time point.

Decision Processes

 A Markov decision process augments a Markov chain with actions and rewards:

- set S of states.
- set A of actions.

- set S of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.

- set *S* of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t)$ specifies the expected reward at time t. R(s, a) is the expected reward of doing a in state s

- set *S* of states.
- set A of actions.
- $P(S_{t+1} \mid S_t, A_t)$ specifies the dynamics.
- $R(S_t, A_t)$ specifies the expected reward at time t. R(s, a) is the expected reward of doing a in state s
- ullet γ is discount factor.

Each week Sam has to decide whether to party or relax:

```
States: {healthy, sick}Actions: {relax, party}
```

Dynamics:

Each week Sam has to decide whether to party or relax:

- States: {healthy, sick}Actions: {relax, party}
- Dynamics:

		P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
healthy healthy sick sick	party	0.1

Each week Sam has to decide whether to party or relax:

- States: {healthy, sick}Actions: {relax, party}
- Dynamics:

		P(healthy State, Action)
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	relax party relax party	0.1

• Reward:

Each week Sam has to decide whether to party or relax:

- States: {healthy, sick}Actions: {relax, party}
- Dynamics:

		P(healthy State, Action)
healthy	relax	0.95
healthy healthy sick sick	party	0.7
sick	relax	0.5
sick	party	0.1

Reward:

State	Action	Reward
healthy	relax	7
healthy	party	10
sick	relax	0
sick	party	2

Example: Simple Grid World

Grid World Model

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- Four special rewarding states; the agent gets the reward when leaving.

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- The robot gets +10 or +3 in the state, then it stays there getting no reward. These are absorbing states.
 - ▶ The robot will eventually reach an absorbing state.
 - indefinite horizon

Information Availability

What information is available when the agent decides what to do?

• fully-observable MDP (FOMDP) the agent gets to observe S_t when deciding on action A_t .

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

[This lecture only considers FOMDPs. POMDPS are much harder to solve.]

Policies

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

Policies

• A stationary policy is a function:

$$\pi: \mathcal{S} \to \mathcal{A}$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

 An optimal policy is one with maximum expected discounted reward.

Policies

• A stationary policy is a function:

$$\pi: \mathcal{S} \to \mathcal{A}$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- An MDP with stationary dynamics and rewards with infinite or indefinite horizon, always has an stationary policy that is optimal.

Policies

• A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- An MDP with stationary dynamics and rewards with infinite or indefinite horizon, always has an stationary policy that is optimal.

(A randomized policy or a non-stationary policy is never better than a stationary policy.)

Example: to party or relax?

Each week *Sam* has to decide whether to party or relax each weekend:

- States: {healthy, sick}
- Actions: {relax, party}

How many stationary policies are there?

Example: to party or relax?

Each week *Sam* has to decide whether to party or relax each weekend:

- States: {healthy, sick}
- Actions: {relax, party}

How many stationary policies are there? What are they?

Example: to party or relax?

Each week *Sam* has to decide whether to party or relax each weekend:

- States: {healthy, sick}
- Actions: {relax, party}

How many stationary policies are there? What are they?

For the grid world with 100 states and 4 actions, how many stationary policies are there?

Given a policy π :

• $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) =$$

$$Q^{\pi}(s,a) =$$

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s,\pi(s))$$

 $Q^{\pi}(s,a) =$

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

 $Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{\pi}(s')$

• $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) =$$

$$V^*(s) =$$

$$\pi^*(s) =$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a,s) V^*(s')$$
 $V^*(s) = \pi^*(s) =$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a,s) V^*(s')$$

$$V^*(s) = \max_{a} Q^*(s,a)$$

$$\pi^*(s) =$$

- $Q^*(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^*(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = \arg \max_{a} Q^{*}(s, a)$$

• Let V_k and Q_k be k-step lookahead value and Q functions.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

- Let V_k and Q_k be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the k+1 step lookahead value function.
- Set V_0 arbitrarily.
- Compute Q_{i+1} , V_{i+1} from V_i .
- This converges exponentially fast (in k) to the optimal value function.

The error reduces proportionally to $\frac{\gamma^k}{1-\gamma}$

Tiny MDP Example: 6 states, 4 actions

Actions (if crash, stay still with a reward of -1)

- move right
- move left, except as above.
- up risky: P(up)=0.8, P(left)=0.1, P(right)=0.1
- ightharpoonup up carefully: go up with extra reward of -1

AIPython: python -i mdpExamples.py MDPtiny(discount=0.9).show()

Example: Simple Grid World

AlPython: python -i mdpExamples.py grid(discount=0.9).show()

 The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- It can either store V[s] or Q[s, a].

Asynchronous VI: storing V[s]

- Repeat forever:
 - ► Select state *s*
 - V[s] ←

Asynchronous VI: storing V[s]

- Repeat forever:
 - ► Select state *s*

$$V[s] \leftarrow \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V[s'] \right)$$

26 / 31

Asynchronous VI: storing Q[s, a]

- Repeat forever:
 - Select state s, action a
 - \triangleright $Q[s, a] \leftarrow$

Asynchronous VI: storing Q[s, a]

- Repeat forever:
 - Select state s, action a
 - $P(s, a) \leftarrow R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) \left(\max_{a'} Q[s', a'] \right)$

Policy Iteration

- Set π_0 arbitrarily, let i=0
- Repeat:
 - ightharpoonup evaluate $Q^{\pi_i}(s,a)$
 - $\blacktriangleright \text{ let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
 - ▶ set i = i + 1
- until $\pi_i(s) = \pi_{i-1}(s)$

Policy Iteration

- Set π_0 arbitrarily, let i=0
- Repeat:
 - ightharpoonup evaluate $Q^{\pi_i}(s,a)$
 - $\blacktriangleright \text{ let } \pi_{i+1}(s) = \operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
 - ▶ set i = i + 1
- until $\pi_i(s) = \pi_{i-1}(s)$

Evaluating $Q^{\pi_i}(s, a)$ means finding a solution to a set of $|S| \times |A|$ linear equations with $|S| \times |A|$ unknowns.

It can also be approximated iteratively.

Modified Policy Iteration

Set $\pi[s]$ arbitrarily Set Q[s, a] arbitrarily Repeat forever:

- Repeat for a while:
 - ► Select state s, action a

$$P(s,a) \leftarrow R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) Q[s',\pi[s']]$$

• $\pi[s] \leftarrow argmax_aQ[s, a]$

Q, V, π, R

$$Q^{*}(s, a) = \sum_{s'} P(s' \mid a, s) \left(R(s, a, s') + \gamma V^{*}(s') \right)$$

$$= R(s, a) + \gamma \sum_{s'} P(s' \mid a, s) V^{*}(s')$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = argmax_{a} Q^{*}(s, a)$$

where

$$R(s,a) = \sum_{s'} P(s' \mid a,s) R(s,a,s')$$

30/31

Partially Observable MDP (POMDP)

 B_i agent's belief state at time i. A_i agent's action. O_i is what the agent observes. R_i is the reward. S_i is the world state.