Agents as Processes

Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- finite and fixed number of steps finite horizon

Decision-theoretic Planning

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received

Decision-theoretic Planning

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted

Decision-theoretic Planning

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards

Decision-theoretic Planning

What should an agent do when

- it gets rewards (including punishments) and tries to maximize its rewards received
- actions can be stochastic; the outcome of an action can't be fully predicted
- there is a model that specifies the (probabilistic) outcome of actions and the rewards
- the world is fully observable?

Initial Assumptions

- flat or modular or hierarchical
- explicit states or features or individuals and relations
- static or finite stage or indefinite stage or infinite stage
- fully observable or partially observable
- deterministic or stochastic dynamics
- goals or complex preferences
- single agent or multiple agents
- knowledge is given or knowledge is learned
- perfect rationality or bounded rationality

Utility and time

- Would you prefer $\$ 1000$ today or $\$ 1000$ next year?
- What price would you pay now to have an eternity of happiness?
- How can you trade off pleasures today with pleasures in the future?

Utility and time

- How would you compare the following sequences of rewards (per week):

A: $\$ 1000000, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \ldots$
B: $\$ 1000, \$ 1000, \$ 1000, \$ 1000, \$ 1000, \ldots$
C: \$1000, \$0, \$0, \$0, \$0,...
D: $\$ 1, \$ 1, \$ 1, \$ 1, \$ 1, \ldots$
E: $\$ 1, \$ 2, \$ 3, \$ 4, \$ 5, \ldots$

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time. What utility should be assigned? "Return" or "value"

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time. What utility should be assigned? "Return" or "value"

- total reward $V=\sum_{i=1}^{\infty} r_{i}$
- average reward $V=\lim _{n \rightarrow \infty}\left(r_{1}+\cdots+r_{n}\right) / n$

Average vs Accumulated Rewards

Agent gets stuck in "absorbing" state(s) with zero reward?

Rewards and Values

Suppose the agent receives a sequence of rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ in time.

- discounted return $V=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots$
γ is the discount factor $0 \leq \gamma \leq 1$.

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
V=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots
$$

$=$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=
$$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

- How is the infinite future valued compared to immediate rewards?

Properties of the Discounted Rewards

- The discounted return for rewards $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ is

$$
\begin{aligned}
V & =r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\gamma^{3} r_{4}+\cdots \\
& =r_{1}+\gamma\left(r_{2}+\gamma\left(r_{3}+\gamma\left(r_{4}+\ldots\right)\right)\right)
\end{aligned}
$$

- If V_{t} is the value obtained from time step t

$$
V_{t}=r_{t}+\gamma V_{t+1}
$$

- How is the infinite future valued compared to immediate rewards?

$$
\begin{aligned}
& 1+\gamma+\gamma^{2}+\gamma^{3}+\cdots=1 /(1-\gamma) \\
& \text { Therefore } \frac{\text { minimum reward }}{1-\gamma} \leq V_{t} \leq \frac{\text { maximum reward }}{1-\gamma}
\end{aligned}
$$

- We can approximate V with the first k terms, with error:

$$
V-\left(r_{1}+\gamma r_{2}+\cdots+\gamma^{k-1} r_{k}\right)=\gamma^{k} V_{k+1}
$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_{i} is state at time i, and A_{i} is the action at time i :

$$
P\left(S_{t+1} \mid S_{0}, A_{0}, \ldots, S_{t}, A_{t}\right)=
$$

World State

- The world state is the information such that if the agent knew the world state, no information about the past is relevant to the future. Markovian assumption.
- S_{i} is state at time i, and A_{i} is the action at time i :

$$
P\left(S_{t+1} \mid S_{0}, A_{0}, \ldots, S_{t}, A_{t}\right)=P\left(S_{t+1} \mid S_{t}, A_{t}\right)
$$

$P\left(s^{\prime} \mid s, a\right)$ is the probability that the agent will be in state s^{\prime} immediately after doing action a in state s.

- The dynamics is stationary if the distribution is the same for each time point.

Decision Processes

- A Markov decision process augments a Markov chain with actions and rewards:

Markov Decision Processes

An MDP consists of:

- set S of states.
- set A of actions.

Markov Decision Processes

An MDP consists of:

- set S of states.
- set A of actions.
- $P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ specifies the dynamics.

Markov Decision Processes

An MDP consists of:

- set S of states.
- set A of actions.
- $P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ specifies the dynamics.
- $R\left(S_{t}, A_{t}\right)$ specifies the expected reward at time t. $R(s, a)$ is the expected reward of doing a in state s

Markov Decision Processes

An MDP consists of:

- set S of states.
- set A of actions.
- $P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ specifies the dynamics.
- $R\left(S_{t}, A_{t}\right)$ specifies the expected reward at time t. $R(s, a)$ is the expected reward of doing a in state s
- γ is discount factor.

Example: to party or relax?

Each week Sam has to decide whether to party or relax:

- States: \{healthy, sick\}
- Actions: $\{$ relax, party $\}$
- Dynamics:

Example: to party or relax?

Each week Sam has to decide whether to party or relax:

- States: \{healthy, sick\}
- Actions: $\{$ relax, party $\}$
- Dynamics:

State	Action	$P($ healthy \mid State, Action $)$
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

Example: to party or relax?

Each week Sam has to decide whether to party or relax:

- States: \{healthy, sick\}
- Actions: $\{$ relax, party $\}$
- Dynamics:

State	Action	$P($ healthy \mid State, Action $)$
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

- Reward:

Example: to party or relax?

Each week Sam has to decide whether to party or relax:

- States: \{healthy, sick\}
- Actions: $\{$ relax, party $\}$
- Dynamics:

State	Action	$P($ healthy \mid State, Action $)$
healthy	relax	0.95
healthy	party	0.7
sick	relax	0.5
sick	party	0.1

- Reward:

State	Action	Reward
healthy	relax	7
healthy	party	10
sick	relax	0
sick	party	2

Example: Simple Grid World

Grid World Model

- Actions: up, down, left, right.
- 100 states corresponding to the positions of the robot.
- Robot goes in the commanded direction with probability 0.7 , and one of the other directions with probability 0.1 .
- If it crashes into an outside wall, it remains in its current position and has a reward of -1 .
- Four special rewarding states; the agent gets the reward when leaving.

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive $(+10$ or +3$)$ reward state.
- the process never halts
- infinite horizon

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- The robot gets flung to one of the corners at random after leaving a positive $(+10$ or +3$)$ reward state.
- the process never halts
- infinite horizon
- The robot gets +10 or +3 in the state, then it stays there getting no reward. These are absorbing states.
- The robot will eventually reach an absorbing state.
- indefinite horizon

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_{t} when deciding on action A_{t}.

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_{t} when deciding on action A_{t}.
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.

Information Availability

What information is available when the agent decides what to do?

- fully-observable MDP (FOMDP) the agent gets to observe S_{t} when deciding on action A_{t}.
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It is a mix of a hidden Markov model and MDP. It needs to remember (some function of) its sensing and acting history.
[This lecture only considers FOMDPs.
POMDPS are much harder to solve.]

Policies

- A stationary policy is a function:

$$
\pi: S \rightarrow A
$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

Policies

- A stationary policy is a function:

$$
\pi: S \rightarrow A
$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.

Policies

- A stationary policy is a function:

$$
\pi: S \rightarrow A
$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- An MDP with stationary dynamics and rewards with infinite or indefinite horizon, always has an stationary policy that is optimal.

Policies

- A stationary policy is a function:

$$
\pi: S \rightarrow A
$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected discounted reward.
- An MDP with stationary dynamics and rewards with infinite or indefinite horizon, always has an stationary policy that is optimal.
(A randomized policy or a non-stationary policy is never better than a stationary policy.)

Example: to party or relax?

Each week Sam has to decide whether to party or relax each weekend:

- States: $\{$ healthy, sick $\}$
- Actions: $\{$ relax, party $\}$

How many stationary policies are there?

Example: to party or relax?

Each week Sam has to decide whether to party or relax each weekend:

- States: $\{$ healthy, sick $\}$
- Actions: \{relax, party\}

How many stationary policies are there?
What are they?

Example: to party or relax?

Each week Sam has to decide whether to party or relax each weekend:

- States: $\{$ healthy, sick $\}$
- Actions: \{relax, party\}

How many stationary policies are there?
What are they?

For the grid world with 100 states and 4 actions, how many stationary policies are there?

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$
\begin{aligned}
V^{\pi}(s) & = \\
Q^{\pi}(s, a) & =
\end{aligned}
$$

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$
\begin{aligned}
V^{\pi}(s) & =Q^{\pi}(s, \pi(s)) \\
Q^{\pi}(s, a) & =
\end{aligned}
$$

Value of a Policy

Given a policy π :

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$
\begin{aligned}
V^{\pi}(s) & =Q^{\pi}(s, \pi(s)) \\
Q^{\pi}(s, a) & =R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^{*} and V^{*} can be defined mutually recursively:

$$
\begin{aligned}
Q^{*}(s, a) & = \\
V^{*}(s) & = \\
\pi^{*}(s) & =
\end{aligned}
$$

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^{*} and V^{*} can be defined mutually recursively:

$$
\begin{aligned}
Q^{*}(s, a) & =R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V^{*}\left(s^{\prime}\right) \\
V^{*}(s) & = \\
\pi^{*}(s) & =
\end{aligned}
$$

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^{*} and V^{*} can be defined mutually recursively:

$$
\begin{aligned}
Q^{*}(s, a) & =R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V^{*}\left(s^{\prime}\right) \\
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
\pi^{*}(s) & =
\end{aligned}
$$

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^{*} and V^{*} can be defined mutually recursively:

$$
\begin{aligned}
Q^{*}(s, a) & =R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V^{*}\left(s^{\prime}\right) \\
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
\pi^{*}(s) & =\arg \max _{a} Q^{*}(s, a)
\end{aligned}
$$

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.
- Set V_{0} arbitrarily.

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.
- Set V_{0} arbitrarily.
- Compute Q_{i+1}, V_{i+1} from V_{i}.

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.
- Set V_{0} arbitrarily.
- Compute Q_{i+1}, V_{i+1} from V_{i}.
- This converges exponentially fast (in k) to the optimal value function.

Value Iteration

- Let V_{k} and Q_{k} be k-step lookahead value and Q functions.
- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.
- Set V_{0} arbitrarily.
- Compute Q_{i+1}, V_{i+1} from V_{i}.
- This converges exponentially fast (in k) to the optimal value function.
The error reduces proportionally to $\frac{\gamma^{k}}{1-\gamma}$

Tiny MDP Example: 6 states, 4 actions

Actions (if crash, stay still with a reward of -1)
\Rightarrow move right

- move left, except as above.

合 up risky: $P(u p)=0.8, P($ left $)=0.1, P(r i g h t)=0.1$
up carefully: go up with extra reward of -1
AIPython: python -i mdpExamples.py
MDPtiny (discount=0.9).show()

Example: Simple Grid World

AIPython: python -i mdpExamples.py
grid(discount=0.9).show()

Asynchronous Value Iteration

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.

Asynchronous Value Iteration

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if

Asynchronous Value Iteration

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.

Asynchronous Value Iteration

- The agent doesn't need to sweep through all the states, but can update the value functions for each state individually.
- This converges to the optimal value functions, if each state and action is visited infinitely often in the limit.
- It can either store $V[s]$ or $Q[s, a]$.

Asynchronous VI: storing V[s]

- Repeat forever:
- Select state s
- $V[s] \leftarrow$

Asynchronous VI: storing V[s]

- Repeat forever:
- Select state s
- $V[s] \leftarrow \max _{a}\left(R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left[s^{\prime}\right]\right)$

Asynchronous VI: storing $Q[s, a]$

- Repeat forever:
- Select state s, action a
- $Q[s, a] \leftarrow$

Asynchronous VI: storing $Q[s, a]$

- Repeat forever:
- Select state s, action a
$\checkmark Q[s, a] \leftarrow R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left(\max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)$

Policy Iteration

- Set π_{0} arbitrarily, let $i=0$
- Repeat:
- evaluate $Q^{\pi_{i}}(s, a)$
- let $\pi_{i+1}(s)=\operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
- set $i=i+1$
- until $\pi_{i}(s)=\pi_{i-1}(s)$

Policy Iteration

- Set π_{0} arbitrarily, let $i=0$
- Repeat:
- evaluate $Q^{\pi_{i}}(s, a)$
- let $\pi_{i+1}(s)=\operatorname{argmax}_{a} Q^{\pi_{i}}(s, a)$
- set $i=i+1$
- until $\pi_{i}(s)=\pi_{i-1}(s)$

Evaluating $Q^{\pi_{i}}(s, a)$ means finding a solution to a set of $|S| \times|A|$ linear equations with $|S| \times|A|$ unknowns.

It can also be approximated iteratively.

Modified Policy Iteration

Set $\pi[s]$ arbitrarily
Set $Q[s, a]$ arbitrarily
Repeat forever:

- Repeat for a while:
- Select state s, action a
$-Q[s, a] \leftarrow R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) Q\left[s^{\prime}, \pi\left[s^{\prime}\right]\right]$
- $\pi[s] \leftarrow \operatorname{argmax}_{a} Q[s, a]$

Q, V, π, R

$$
\begin{aligned}
Q^{*}(s, a) & =\sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right)\left(R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right) \\
& =R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V^{*}\left(s^{\prime}\right) \\
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
\pi^{*}(s) & =\operatorname{argmax}_{a} Q^{*}(s, a)
\end{aligned}
$$

where

$$
R(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) R\left(s, a, s^{\prime}\right)
$$

Partially Observable MDP (POMDP)

B_{i} agent's belief state at time $i . A_{i}$ agent's action. O_{i} is what the agent observes. R_{i} is the reward. S_{i} is the world state.

