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Goals and Preferences

Alice . . . went on “Would you please tell me, please, which way I
ought to go from here?”
“That depends a good deal on where you want to get to,” said the
Cat.
“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, 1832–1898
Alice’s Adventures in Wonderland, 1865

Chapter 6
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Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of utility

know the assumptions behind measures of preference

estimate the utility of an outcome
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Preferences

Actions result in outcomes

Agents have preferences over outcomes

A rational agent will do the action that has the best outcome
for them

Sometimes agents don’t know the outcomes of the actions,
but they still need to compare actions

Agents have to act.
(Doing nothing is (often) an action).
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Preferences Over Outcomes

If o1 and o2 are outcomes

o1 ⪰ o2 means o1 is at least as desirable as o2.

o1 ∼ o2 means o1 ⪰ o2 and o2 ⪰ o1.

o1 ≻ o2 means o1 ⪰ o2 and o2 ̸⪰ o1
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Lotteries

An agent may not know the outcomes of its actions, but only
have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It is
written

[p1 : o1, p2 : o2, . . . , pk : ok ]

where the oi are outcomes and pi ≥ 0 such that∑
i

pi = 1

The lottery specifies that outcome oi occurs with probability
pi .

When we talk about outcomes, we will include lotteries.
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Properties of Preferences

Completeness: Agents have to act, so they must have
preferences:

∀o1∀o2 o1 ⪰ o2 or o2 ⪰ o1

Transitivity: Preferences must be transitive:

if o1 ⪰ o2 and o2 ≻ o3 then o1 ≻ o3

(Similarly for other mixtures of ≻ and ⪰.)
Rationale: otherwise o1 ⪰ o2 and o2 ≻ o3 and o3 ⪰ o1.
If they are prepared to pay to get o2 instead of o3,
and are happy to have o1 instead of o2,
and are happy to have o3 instead of o1
−→ money pump.
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Properties of Preferences (cont.)

Monotonicity: An agent prefers a larger chance of getting a better
outcome than a smaller chance:

If o1 ≻ o2 and p > q then

[p : o1, 1− p : o2] ≻ [q : o1, 1− q : o2]
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Consequence of axioms

Suppose o1 ≻ o2 and o2 ≻ o3. Consider whether the agent
would prefer
▶ o2
▶ the lottery [p : o1, 1− p : o3]

for different values of p ∈ [0, 1].

Plot which one is preferred as a function of p:

o2 -

lottery -

0 1
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Properties of Preferences (cont.)

Continuity: Suppose o1 ≻ o2 and o2 ≻ o3, then there exists a
p ∈ [0, 1] such that

o2 ∼ [p : o1, 1− p : o3]
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Properties of Preferences (cont.)

Decomposability: (no fun in gambling). An agent is indifferent
between lotteries that have same probabilities and outcomes. This
includes lotteries over lotteries. For example:

[p : o1, 1− p : [q : o2, 1− q : o3]]

∼ [p : o1, (1− p)q : o2, (1− p)(1− q) : o3]
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Properties of Preferences (cont.)

Substitutability: if o1 ∼ o2 then the agent is indifferent between
lotteries that only differ by o1 and o2:

[p : o1, 1− p : o3] ∼ [p : o2, 1− p : o3]
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Alternative Axiom for Substitutability

Substitutability: if o1 ⪰ o2 then the agent weakly prefers lotteries
that contain o1 instead of o2, everything else being equal.
That is, for any number p and outcome o3:

[p : o1, (1− p) : o3] ⪰ [p : o2, (1− p) : o3]
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What we would like

We would like a measure of preference that can be combined
with probabilities. So that

value([p : o1, 1− p : o2])

= p ∗ value(o1) + (1− p) ∗ value(o2)
Money does not act like this.
What would you prefer

$1, 000, 000 or [0.5 : $0, 0.5 : $2, 000, 000]?

It may seem that preferences are too complex and
muti-faceted to be represented by single numbers.
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Theorem

If preferences follow the preceding properties, then preferences can
be measured by a function

utility : outcomes → [0, 1]

such that

o1 ⪰ o2 if and only if utility(o1) ≥ utility(o2).

Utilities are linear with probabilities:

utility([p1 : o1, p2 : o2, . . . , pk : ok ])

=
k∑

i=1

pi ∗ utility(oi )

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 12.1 15 / 46



Proof

If all outcomes are equally preferred,

set utility(oi ) = 0 for all
outcomes oi .

Otherwise, suppose the best outcome is best and the worst
outcome is worst.

For any outcome oi , define utility(oi ) to be the number ui
such that

oi ∼ [ui : best, 1− ui : worst]

This exists by the Continuity property.
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Proof (cont.)

Suppose o1 ⪰ o2 and utility(oi ) = ui , then by Substitutability,

[u1 : best, 1− u1 : worst]

⪰

[u2 : best, 1− u2 : worst]

Which, by completeness and monotonicity implies u1 ≥ u2.
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Proof (cont.)

To prove utilities are linear with probabilities

Suppose u = utility([p1 : o1, p2 : o2, . . . , pk : ok ]).

Suppose utility(oi ) = ui . We know:

oi ∼ [ui : best, 1− ui : worst]

By substitutability, we can replace each oi by
[ui : best, 1− ui : worst], so

u = utility( [ p1 : [u1 : best, 1− u1 : worst]

. . .

pk : [uk : best, 1− uk : worst]])
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Proof (cont.)

By decomposability, this is equivalent to:

u = utility( [ p1u1 + · · ·+ pkuk

: best,

p1(1− u1) + · · ·+ pk(1− uk)

: worst]])

Thus, by definition of utility:

u = p1 ∗ u1 + · · ·+ pk ∗ uk
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Utilities

Two conditions of utility:

o1 ⪰ o2 if and only if utility(o1) ≥ utility(o2).

Utilities are linear with probabilities:

utility([p1 : o1, p2 : o2, . . . , pk : ok ])

=
k∑

i=1

pi ∗ utility(oi )

Proved: probability of indifference satisfies the conditions.

A (positive) linear function – multiplying by positive constant
and/or adding a constant – of a utility function also satisfies
the conditions.

Often a different scale, such as [0, 100], is used for utility.

Sometimes negative values – costs – are used.
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Delivery Robot Decision

The robot can choose to wear pads to protect itself or not.

The robot can choose to go the short way past the stairs or a
long way that reduces the chance of an accident.

There uncertainty about whether there will be an accident.

wear pads

don’t 
wear 
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident
accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight

What are reasonable utilities for the 8 outcomes w0, . . . ,w7?
(suppose range [0, 100])
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Utility as a function of money

$0 $2,000,000

Utility

0

1

Risk averse

Risk
 neu

tra
l

Risk seeking

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 12.1 22 / 46



Possible utility as a function of money

Someone who really wants a toy worth $30, but who would also
like one worth $20:

10 20 30 40 50 60 70 80 90 100
0

1

dollars

utility
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Factored Representation of Utility

Under strong assumptions (see later), utility can be
decomposed into a sum of factors:

u(X1, . . . ,Xn) = f1(X1) + · · ·+ fn(Xn).

This is called additive utility.

Many ways to represent the same utility:
— a number can be added to one factor as long as it is
subtracted from others.
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Additive Utility

An additive utility has a canonical representation:

u(X1, . . . ,Xn) = w1 ∗ u1(X1) + · · ·+ wn ∗ un(Xn).

If besti is the best value of Xi , ui (Xi=besti ) = 1.
If worsti is the worst value of Xi , ui (Xi=worsti ) = 0.

wi are weights,
∑

i wi = 1.
The weights reflect the relative importance of features.

We can determine weights by comparing outcomes.

w1 = u(best1, x2, . . . , xn)− u(worst1, x2, . . . , xn).

for any values x2, . . . , xn of X2, . . . ,Xn.

Assumption behind additive utility: for all x1, x
′
1,

u(x1, x2, . . . , xn)− u(x ′1, x2, . . . , xn) is the same for all
x2, . . . , xn, and similarly for other positions.
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Complements and Substitutes

Often additive independence is not a good assumption.

Values x1 of feature X1 and x2 of feature X2 are complements
if having both is better than the sum of the two.

Values x1 of feature X1 and x2 of feature X2 are substitutes if
having both is worse than the sum of the two.

Example: on a holiday
▶ An excursion for 6 hours North on day 3.
▶ An excursion for 6 hours South on day 3.

Example: on a holiday
▶ A trip to a location 3 hours North on day 3
▶ The return trip for the same day.
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Canonical Representation of Utility

Generalized additive utility defines utility in terms of sum of
factors, where a factor is a function on some of the variables.

The canonical representation of utility allows weights for
conjunctions of feature values. For Boolean {0, 1} features:

u(x1, . . . , xn) = w0 + w1 ∗ x1 + w2 ∗ x2 · · ·+ wn ∗ xn
+ w12 ∗ x1 ∗ x2 + w13 ∗ x1 ∗ x3 + . . .

+ w123 ∗ x1 ∗ x2 ∗ x3 + . . .

. . .

2n weights can represent any utility on n Boolean features.
Most weights can be 0 (and omitted).

xi and xj are complements iff wij > 0

xi and xj are substitutes iff wij < 0
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Utility and time

Would you prefer $1000 today or $1000 next year?

What price would you pay now to have an eternity of
happiness?

How can you trade off pleasures today with pleasures in the
future?
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Pascal’s Wager (1670)

Decide whether to believe in God.

Believe in 
God

Utility

God 
Exists
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Utility and time

How would you compare the following sequences of rewards
(per week):

A: $1000000, $0, $0, $0, $0, $0,. . .
B: $1000, $1000, $1000, $1000, $1000,. . .
C: $1000, $0, $0, $0, $0,. . .
D: $1, $1, $1, $1, $1,. . .
E: $1, $2, $3, $4, $5,. . .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 12.1 30 / 46



Rewards and Values

Suppose the agent receives a sequence of rewards r1, r2, r3, r4, . . . in
time. What utility should be assigned? “Return” or “value”

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n
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Average vs Accumulated Rewards

Agent goes on forever?

Agent gets stuck in "absorbing" 
state(s) with zero reward?

yes no

yes no
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Rewards and Values

Suppose the agent receives a sequence of rewards r1, r2, r3, r4, . . . in
time.

discounted return V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.
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Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
=

r1 + γ(r2 + γ(r3 + γ(r4 + . . . )))

If Vt is the value obtained from time step t

Vt = rt + γVt+1

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ Vt ≤

maximum reward

1− γ
You can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkVk+1

∝ γk/(1− γ)
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Properties of the Discounted Rewards

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
At each time:
▶ with probability γ, agent keeps going
▶ otherwise agent stops

with return is

total reward is equivalent to discounting.

With an interest rate of i , a dollar now is worth 1 + i in a
year. So a dollar in a year is worth 1/(1 + i) now. γ can be
seen as 1/(1 + i) where i is interest rate.

γ should reflect an agent’s utility.
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Why discounting? [Koopmans 1972]

With an infinite sequence of outcomes ⟨o1, o2, o3, . . . ⟩ if
the first time period matters, so ∃ o1, o2, o3, . . . and o ′1 where

⟨o1, o2, o3, . . . ⟩ ≻
〈
o ′1, o2, o3, . . .

〉

preferences on first two times do not depend on the future:

⟨x1, x2, o3, o4 . . . ⟩ ≻ ⟨y1, y2, o3, o4 . . . ⟩
if and only if

〈
x1, x2, o

′
3, o

′
4 . . .

〉
≻

〈
y1, y2, o

′
3, o

′
4 . . .

〉
stationarity:

⟨o1, o2, o3, . . . ⟩ ≻
〈
o1, o

′
2, o

′
3, . . .

〉
if and only if ⟨o2, o3, . . . ⟩ ≻

〈
o ′2, o

′
3, . . .

〉
the agent only cares about finite subspaces of infinite time

then there exists a discount factor γ and function r such that

utility(⟨o1, o2, o3, . . . ⟩) =
∑
i

γi−1r(oi )
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Allais Paradox (1953)

What would you prefer:

A: $1m — one million dollars

B: lottery [0.10 : $2.5m, 0.89 : $1m, 0.01 : $0]

What would you prefer:

C: lottery [0.11 : $1m, 0.89 : $0]

D: lottery [0.10 : $2.5m, 0.9 : $0]

It is inconsistent with the axioms of preferences to have A ≻ B and
D ≻ C .

A,C: lottery [0.11 : $1m, 0.89 : X ]

B,D: lottery [0.10 : $2.5m, 0.01 : $0, 0.89 : X ]
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Prospect Theory

$

psychological
value

GainsLosses

Preferences depend on the agent’s reference point: current
wealth.

For gains, they are risk averse.

For losses, they are risk seeking

Losses are (about) twice as bad as gains.

This better fits with human preferences.
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Reference Points

Consider Anthony and Betty who (for argument) are essentially the
same except:

Anthony’s current wealth is $1 million.

Betty’s current wealth is $4 million.

They are both offered the choice between a gamble and a sure
thing:

Gamble: equal chance to end up owning $1 million or $4
million.

Sure Thing: own $2 million

What does expected utility theory predict?

They make same choice
as preference only depends on the outcomes.

What does prospect theory predict?
Anthony is making a gain so will will be risk averse and take the
sure thing.
Better is making a loss and so will will be risk seeking and gamble.
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Reference Points [Kahneman 2011]

Twins Andy and Bobbie, have identical tastes and identical
starting jobs. There are two jobs that are identical, except that

job A gives a raise of $10000
job B gives an extra day of vacation per month.

They are each indifferent to the outcomes and toss a coin. Andy
takes job A, and Bobbie takes job B.
Now the company suggests they swap jobs with a $500 bonus.
Will they swap?

What does utility theory predict?
What does prospect theory predict?
Utility theory predicts they swap. Prospect theory predicts they do
not swap.
[From D. Kahneman, Thinking, Fast and Slow, 2011, p. 291.]
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Framing Effects [Tversky and Kahneman]

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program A: 200 people will be saved
Program B: probability 1/3: 600 people will be saved

probability 2/3: no one will be saved

Which program would you favor?

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program C: 400 people will die
Program D: probability 1/3: no one will die

probability 2/3: 600 will die

Which program would you favor?
Tversky and Kahneman: 72% chose A over B.
22% chose C over D.
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Framing Effects

What do you think of Alan and Ben:

Alan: intelligent—industrious—impulsive—critical—
stubborn—envious

Ben: envious—stubborn—critical—impulsive—industrious—
intelligent

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 82]
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Framing Effects

Suppose you had bought tickets for the theatre for $50. When
you got to the theatre, you had lost the tickets. You have
your credit card and can buy equivalent tickets for $50. Do
you buy the replacement tickets on your credit card?

Suppose you had $50 in your pocket to buy tickets. When you
got to the theatre, you had lost the $50. You have your credit
card and can buy equivalent tickets for $50. Do you buy the
tickets on your credit card?

[From R.M. Dawes, Rational Choice in an Uncertain World, 1988.]
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The Ellsberg Paradox

Two bags:

Bag 1 40 white chips, 30 yellow chips, 30 green chips

Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

A: Receive $1m if a white or yellow chip is drawn from
bag 1

B: Receive $1m if a white or yellow chip is drawn from
bag 2

C: Receive $1m if a white or green chip is drawn from
bag 2

What about

D: Lottery [0.5 : B, 0.5 : C ]

However A and D should give same outcome, no matter what the
proportion in Bag 2.
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St. Petersburg Paradox

What if there is no “best” outcome?
Are utilities unbounded?

Suppose utilities are unbounded.

Then for any outcome oi there is an outcome oi+1 such that
u(oi+1) > 2u(oi ).

Would the agent prefer o1 or the lottery [0.5 : o2, 0.5 : 0]
where 0 is the worst outcome?

Is it rational to gamble o1 to on a coin toss to get o2?

Is it rational to gamble o2 to on a coin toss to get o3?

Is it rational to gamble o3 to on a coin toss to get o4?

What will eventually happen?
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Predictor Paradox

Two boxes:

Box 1: contains $10,000
Box 2: contains either $0 or $1m

You can either choose both boxes or just box 2.

The “predictor” has put $1m in box 2 if he thinks you will
take box 2 and $0 in box 2 if he thinks you will take both.

The predictor has been correct in previous predictions.

Do you take both boxes or just box 2?
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