Counterfactual Reasoning

- The do calculus is for intervening before observing. $P(x \mid y, d o(z))$ means the probability of x after doing z then observing y.

Counterfactual Reasoning

- The do calculus is for intervening before observing. $P(x \mid y, d o(z))$ means the probability of x after doing z then observing y.
- The other case is observing then intervening.

Counterfactual Reasoning

- The do calculus is for intervening before observing. $P(x \mid y, d o(z))$ means the probability of x after doing z then observing y.
- The other case is observing then intervening.
- When the intervention is different from what actually happened, this is counterfactual reasoning, which is asking "what if something else were true".
- Let's use a more general notion of counterfactual, where you can ask "what if x were true" without knowing whether x were true.

Example: firing squad

- A captain can give an order to a number of shooters who can each shoot to kill a prisoner condemned to death.

Example: firing squad

- A captain can give an order to a number of shooters who can each shoot to kill a prisoner condemned to death.
- Each shooter can think "I wasn't responsible for killing the prisoner, because the prisoner would be dead even if I didn't shoot".

Example: firing squad

- A captain can give an order to a number of shooters who can each shoot to kill a prisoner condemned to death.
- Each shooter can think "I wasn't responsible for killing the prisoner, because the prisoner would be dead even if I didn't shoot".
- The captain some probability of issuing order.
- Each shooter obeys order with high probability.
- The prisoner is dead if any of the shooters shoot.

Example: firing squad

- A captain can give an order to a number of shooters who can each shoot to kill a prisoner condemned to death.
- Each shooter can think "I wasn't responsible for killing the prisoner, because the prisoner would be dead even if I didn't shoot".
- The captain some probability of issuing order.
- Each shooter obeys order with high probability.
- The prisoner is dead if any of the shooters shoot.
- One counterfactual is "if the second shooter shot, what would have happened if the second shooter had not shot?"

Example: firing squad

- A captain can give an order to a number of shooters who can each shoot to kill a prisoner condemned to death.
- Each shooter can think "I wasn't responsible for killing the prisoner, because the prisoner would be dead even if I didn't shoot".
- The captain some probability of issuing order.
- Each shooter obeys order with high probability.
- The prisoner is dead if any of the shooters shoot.
- One counterfactual is "if the second shooter shot, what would have happened if the second shooter had not shot?"
- Another counterfactual query is "if the prisoner died; what would have happened if shooter 2 had not shot".

Counterfactual Reasoning

$E=e$ is observed, the query is "what if $C=c$ happened?"

Counterfactual Reasoning

$E=e$ is observed, the query is "what if $C=c$ happened?"

1. Determine what must be true for $E=e$ to be observed. This is an instance of abduction.

Counterfactual Reasoning

$E=e$ is observed, the query is "what if $C=c$ happened?"

1. Determine what must be true for $E=e$ to be observed. This is an instance of abduction.
2. Intervene to make $C=c$ true.

Counterfactual Reasoning

$E=e$ is observed, the query is "what if $C=c$ happened?"

1. Determine what must be true for $E=e$ to be observed. This is an instance of abduction.
2. Intervene to make $C=c$ true.
3. Query the resulting model, using the posterior probabilities from the first step as the prior for the intervened model.

Counterfactual Reasoning

$E=e$ is observed, the query is "what if $C=c$ happened?"

1. Determine what must be true for $E=e$ to be observed. This is an instance of abduction.
2. Intervene to make $C=c$ true.
3. Query the resulting model, using the posterior probabilities from the first step as the prior for the intervened model.
This can be implemented by constructing a causal network, from which queries from the counterfactual situation can be made.

Counterfactual Causal Network

To model observing $E=e$, and asking "what if $C=c$ happened":

- represent the problem using a causal network where conditional probabilities are in terms of a deterministic system with stochastic inputs, such as a probabilistic logic program or a probabilistic program

Counterfactual Causal Network

To model observing $E=e$, and asking "what if $C=c$ happened":

- represent the problem using a causal network where conditional probabilities are in terms of a deterministic system with stochastic inputs, such as a probabilistic logic program or a probabilistic program
- create a node C^{\prime} (a primed variable) with the same domain as C but with no parents

Counterfactual Causal Network

To model observing $E=e$, and asking "what if $C=c$ happened":

- represent the problem using a causal network where conditional probabilities are in terms of a deterministic system with stochastic inputs, such as a probabilistic logic program or a probabilistic program
- create a node C^{\prime} (a primed variable) with the same domain as C but with no parents
- for each descendant D of C in the original model, create a node D^{\prime}
- The conditional probability for D^{\prime} is the same as for D, but using primed parents that exist.

Counterfactual Causal Network

To model observing $E=e$, and asking "what if $C=c$ happened":

- represent the problem using a causal network where conditional probabilities are in terms of a deterministic system with stochastic inputs, such as a probabilistic logic program or a probabilistic program
- create a node C^{\prime} (a primed variable) with the same domain as C but with no parents
- for each descendant D of C in the original model, create a node D^{\prime}
- The conditional probability for D^{\prime} is the same as for D, but using primed parents that exist.
- Condition on $C^{\prime}=c$

Counterfactual Causal Network

To model observing $E=e$, and asking "what if $C=c$ happened":

- represent the problem using a causal network where conditional probabilities are in terms of a deterministic system with stochastic inputs, such as a probabilistic logic program or a probabilistic program
- create a node C^{\prime} (a primed variable) with the same domain as C but with no parents
- for each descendant D of C in the original model, create a node D^{\prime}
- The conditional probability for D^{\prime} is the same as for D, but using primed parents that exist.
- Condition on $C^{\prime}=c$
- Condition on the observations of the initial situation using unprimed variables.

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{-}\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$

Example

(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} \circ\right) \vee\left(\neg\right.$ order $\left.\wedge s 1 _n\right)$ (b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot".

Example

(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} \circ\right) \vee\left(\neg\right.$ order $\left.\wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?" :

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} o\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?":

$$
P\left(\text { dead }^{\prime} \mid \text { dead } \wedge \neg s 2^{\prime}\right)
$$

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} o\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?":

$$
P\left(\text { dead }^{\prime} \mid \text { dead } \wedge \neg s 2^{\prime}\right)
$$

(c)

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} o\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?":

$$
P\left(\text { dead }^{\prime} \mid \text { dead } \wedge \neg s 2^{\prime}\right)
$$

(c) "what if the order was not given"

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} o\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?" :

$$
P\left(\text { dead }^{\prime} \mid \text { dead } \wedge \neg s 2^{\prime}\right)
$$

(c) "what if the order was not given" "shooter 1 didn't shoot and the prisoner was dead; what is the probability the prisoner is dead if the order was not given":

Example

(a)

(b)

(c)
(a) original network, e.g., $s 1 \leftrightarrow\left(\right.$ order $\left.\wedge s 1_{_} o\right) \vee\left(\neg \operatorname{order} \wedge s 1 _n\right)$
(b) "what if shooter 2 shot" or "what if shooter 2 didn't shoot". "the prisoner is dead; what is the probability that the prisoner would be dead if the second shooter did not shoot?" :

$$
P\left(\text { dead }^{\prime} \mid \text { dead } \wedge \neg s 2^{\prime}\right)
$$

(c) "what if the order was not given" "shooter 1 didn't shoot and the prisoner was dead; what is the probability the prisoner is dead if the order was not given":

$$
P\left(\text { dead }^{\prime} \mid \neg s 1 \wedge \text { dead } \wedge \neg \text { order }{ }^{\prime}\right)
$$

