In a cohort of 1000 students:

500 used a new method for learning a concept (treatment T).

They were judged whether they understood the concept (evaluation E)

for two subpopulations (one with C=true and one with C=false):

С	Т	<i>E</i> = <i>true</i>	E = false	Rate
true	true	90	10	90/(90+10) = 90%
true	false	290	110	290/(290+110) = 72.5%
false	true	110	290	110/(110+290) = 27.5%
false	false	10	90	10/(10+90) = 10%

Does the treatment increase understanding?

Т	<i>E</i> = <i>true</i>	E = false	Rate
true	200	300	200/(200+300) = 40%
false	300	200	300/(300+200) = 60%

A causal network is a belief network where

$$P(X \mid parents(X)) = P(X \mid do(parents(X)))$$

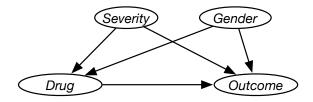
for each variable X, intervening on the parents of X has the same effect as observing them.

• A confounder, between X and Y is a variable Z such that:

$$\blacktriangleright P(Y \mid X, do(Z)) \neq P(Y \mid X)$$

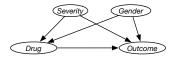
$$\blacktriangleright P(X \mid do(Z)) \neq P(X).$$

A confounder can account for the correlation between X and Y by being a common cause of both.



 $P(outcome \mid drug) \neq P(outcome \mid do(drug)).$

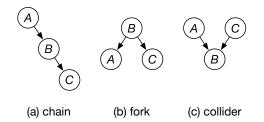
Image: Ima



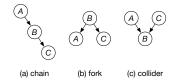
 $P(Outcome \mid do(Drug)) = \sum_{Severity} \sum_{Gender} P(Severity) * P(Gender) \\ * P(Outcome \mid do(Drug), Severity, Gender) \\ = \sum_{Severity} \sum_{Gender} P(Severity) * P(Gender) \\ * P(Outcome \mid Drug, Severity, Gender)$

< D)

Three types of meetings between arcs

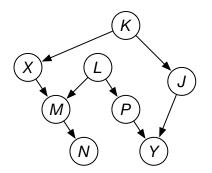


< 🗆 I



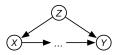
- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs
- X is d-separated from Y given Zs if every path between X and Y is blocked by Zs
- X is independent Y given Zs for all conditional probabilities iff X is d-separated from Y given Zs

Example



- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?
- Are X and Y d-separated by $\{K, N, P\}$?

Backdoor criterion



A set of variables Z satisfies the backdoor criterion for X and Y with respect to directed acyclic graph G if

- Z is observed,
- no node in Z is a descendant of X, and
- Z blocks every path between X and Y that contains an arrow into X.
- If Z satisfies the backdoor criterion, then

$$P(Y \mid do(X), Z) = P(Y \mid X, Z)$$

so,
$$P(Y \mid do(X)) = \sum_{Z} P(Y \mid X, Z) * P(Z)$$

Do-calculus

The do-calculus tells us how probability expressions involving the do-operator can be simplified.

• If Z blocks all of the paths from W to Y in the graph obtained after removing all of the arcs into X, then

 $P(Y \mid do(X), Z, W) = P(Y \mid do(X), Z).$

This is d-separation in the manipulated graph.

• If Z satisfies the backdoor criterion, for X and Y

 $P(Y \mid do(X), Z) = P(Y \mid X, Z).$

This rule lets us convert an intervention into an observation.

• If there are no directed paths from X to Y, or from Y to X:

 $P(Y \mid do(X)) = P(Y).$

This only can be used when there are no observations.

These three rules are complete all cases where interventions can be reduced to observations follow from these rules.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 11.3 10/19

Front-door criterion

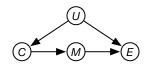
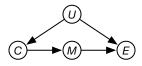


Image: Image:

Front-door criterion



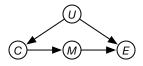
$$P(E \mid do(C)) = \sum_{M} P(E \mid do(C), M) * P(M \mid do(C))$$

=
$$\sum_{M} P(E \mid do(C), do(M)) * P(M \mid do(C))$$

=
$$\sum_{M} P(E \mid do(C), do(M)) * P(M \mid C)$$

=
$$\sum_{M} P(E \mid do(M)) * P(M \mid C)$$

Front-door criterion (Cont.)



From last slide:

$$P(E \mid do(C)) = \sum_{M} P(E \mid do(M)) * P(M \mid C)$$

C' closes the backdoor between M and E, and there are no backdoors between M and C, so:

$$P(E \mid do(M)) = \sum_{C'} P(E \mid do(M), C') * P(C' \mid do(M))$$

So

$$P(E \mid do(C)) = \sum_{M} P(M \mid C) * \sum_{C'} P(E \mid M, C') * P(C').$$

13 / 19

Simpson's Paradox (Revisited)

1000 students, some a particular method for learning a concept (the treatment variable T),

whether they were judged to have understood the concept (evaluation E)

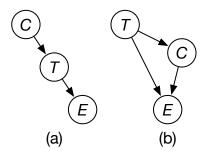
for two subpopulations (one with C=true and one with C=false):

С	Т	<i>E</i> = <i>true</i>	E = false	Rate
true	true	90	10	90/(90+10) = 90%
true	false	290	110	290/(290+110) = 72.5%
false	true	110	290	110/(110+290) = 27.5%
false	false	10	90	10/(10+90) = 10%

Does the treatment increase understanding?

Т	<i>E</i> = <i>true</i>	E = false	Rate
true	200	300	200/(200+300) = 40%
false	300	200	300/(300+200) = 60%

Simpson's Paradox

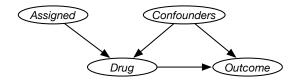


For each one, should we use subpopulations, or the combined population?

< 🗆 .

An instrumental variable is a variable that can be used as a surrogate for a variable that is difficult to manipulate. Observable or controllable variable Z is an instrumental variable for variable X in predicting Y if:

- Z is independent of the possible confounders between X and Y. One way to ensure independence is to randomize Z.
- Y is independent of Z given X. The only way for Z to affect Y is to affect X.
- There is a strong association between Z and X.



- You want $P(Disease \mid do(Drug))$
- You create a randomized experiment where some people are assigned the drug and some are assigned a placebo.
- However, some people might not take the pill prescribed for them.

The do-calculus does not help here; the propensity to not take the drug might be highly correlated with the outcome.

< 🗆 .

\langle	Assigned		Confounders	
	<	Drug		Outcome
	Assigned	Drug	Outcome	count
	true	true	good	300
	true	true	bad	50
	true	false	good	25
	true	false	bad	125
	false	true	good	0
	false	true	bad	0
	false	false	good	100
	false	false	bad	400

< 🗆 .

Example

Assigned	Drug	Outcome	count	
true	true	good	300	
true	true	bad	50	
true	false	good	25	 non-compliers
true	false	bad	125	 non-compliers
false	true	good	0	
false	true	bad	0	
false	false	good	100	
false	false	bad	400	

If no non-compliers would have good outcome if they took the drug, ____ patients taking the drug would have a good outcome.
If all non-compliers would have good outcome if they took the drug, ____ of the drug-taking patients would have a good outcome.

$$0.6 \le P(Outcome = good \mid do(Drug = true)) \le 0.9$$

 $P(Outcome = good \mid do(Drug = false)) = 0.2$