Missing Data

- You cannot just ignore missing data unless you know it is missing at random.
- Is the reason data is missing correlated with something of interest?
- Example: data in a clinical trial to test a drug may be missing because:
- the patient dies
- the patient had severe side effects
- the patient was cured
- the patient had to visit a sick relative. - ignoring some of these may make the drug look better or worse than it is.
- In general you need to model why data is missing.

Missing Data

- Suppose there is a drug claimed to treat a disease.
- The drug does not actually affect the disease or its symptom, but makes sick people sicker.
- Suppose patients were randomly assigned the drug or a placebo, but the sickest people dropped out of the study, because they become too sick to participate.
- What happens if the missing data (from patients who dropped out) is ignored?
- It looks like the treatment works; there are fewer sick people among the people who took the treatment and remained in the study!
Handling missing data requires more than a probabilistic model that models correlation. It requires a causal model of how the data is missing.

Missingness graph

A missingness graph, or m-graph, is a causal model of data where some values might be missing.

- Given a causal network, the m-graph contains all variables of the original graph with the same parents.
- For each variable V that could be observed with some values missing, the m-graph contains two extra variables:
- Boolean variable $M_{-} V$ is true when V 's value is missing. The parents of $M_{-} V$ are the variables missingness depends on.
- Variable V^{*}, with domain $\operatorname{dom}(V) \cup\{$ missing $\}$ missing is a new value (not in the domain of V) V and $M_{-} V$ and the parents of V^{*}, with:

$$
\begin{aligned}
& P\left(V^{*}=\text { missing } \mid M_{-} V=\text { true }\right)=1 \\
& P\left(V^{*}=v \mid M_{-} V=\text { false } \wedge V=v\right)=1
\end{aligned}
$$

- If V is observed to be $v, V^{*}=v$ is conditioned on.

If the value for V is missing, $V^{*}=$ missing is conditioned on.

- V^{*} is always observed.

Example m-graph

A drug that just makes people sicker and so drop out, giving missing data.
Missingness depends on whether they are sick after:

Training with Expectation Maximization

This could be trained using expectation maximization (EM) with Sick_after unobserved, however.

- There are many distributions consistent with the data: all of the unobserved could be very sick after none could be sick after taking the drug.
- EM could converge to any of these.
- EM makes up fiction about those with missing data.
- We need to determine why the data is missing.

Recoverability

- A distribution is recoverable or identifiable from missing data if the distribution can be accurately measured from the data, even with parts of the data missing.
- Data for V is missing completely at random (MCAR) if V and $M_{-} V$ are independent. Missing data can be ignored.
- Variable Y is missing at random (MAR), when Y is independent of $M_{-} Y$ given observed variables V_{o}.

$$
P\left(Y \mid V_{o}, M_{-} Y\right)=P\left(Y \mid V_{o}\right)
$$

then $P\left(Y, V_{o}\right)=P\left(Y \mid V_{o}, M_{-} Y=\right.$ false $) P\left(V_{o}\right)$

- In other cases (e.g., previous case) the distribution may not be recoverable, depending on the graph structure.

Recoverability

Education is observed but Income might have missing values:
(a) completely at random
(b) missing at random
(c) missing not at random

Recoverability

(a)

(b)

(c)

Education is observed but Income might have missing values:
(a) completely at random

$$
\begin{aligned}
& P(\text { Income, Education }) \\
& \quad=P\left(\text { Income }{ }^{*} \text {, Education } \mid M_{-} \text {Income }=\text { false }\right)
\end{aligned}
$$

Recoverability

(a)

(b)

(c)

Education is observed but Income might have missing values:
(b) missing at random
P (Income, Education)
$=P($ Income \mid Education $) * P($ Education $)$
$=P\left(\right.$ Income \mid Education $\wedge M_{-}$Income $=$false $) * P($ Education $)$
$=P\left(\right.$ Income ${ }^{*} \mid$ Education $\wedge M_{\text {_ }}$ Income $=$ false $) * P($ Education $)$

Recoverability

(a)

(b)

(c)

Education is observed but Income might have missing values:
(c) missing not at random (MNAR).

- In this graph, the relationship between income and education cannot be estimated from data.
- EM (and related algorithms) converge to fiction.
- In some cases of MNAR, probabilities can be computed, depending on the graph structure.

