You cannot just ignore missing data unless you know it is missing at random.

Is the reason data is missing correlated with something of interest?

Example: data in a clinical trial to test a drug may be missing because:

- the patient dies
- the patient had severe side effects
- the patient was cured
- the patient had to visit a sick relative.

— ignoring some of these may make the drug look better or worse than it is.

In general you need to model why data is missing.
Suppose there is a drug claimed to treat a disease.

The drug does not actually affect the disease or its symptom, but makes sick people sicker.

Suppose patients were randomly assigned the drug or a placebo, but the sickest people dropped out of the study, because they become too sick to participate.

What happens if the missing data (from patients who dropped out) is ignored?

It looks like the treatment works; there are fewer sick people among the people who took the treatment and remained in the study!

Handling missing data requires more than a probabilistic model that models correlation. It requires a causal model of how the data is missing.
A missingness graph, or \textit{m-graph}, is a causal model of data where some values might be missing.

- Given a causal network, the \textit{m}-graph contains all variables of the original graph with the same parents.
- For each variable \(V \) that could be observed with some values missing, the \textit{m}-graph contains two extra variables:
 - Boolean variable \(M_V \) is true when \(V \)’s value is missing. The parents of \(M_V \) are the variables missingness depends on.
 - Variable \(V^* \), with domain \(\text{dom}(V) \cup \{ \text{missing} \} \)
 \textit{missing} is a new value (not in the domain of \(V \))
 \(V \) and \(M_V \) and the parents of \(V^* \), with:
 \[
 P(V^*=\text{missing} \mid M_V=true) = 1 \\
 P(V^*=v \mid M_V=false \land V=v) = 1.
 \]
- If \(V \) is observed to be \(v \), \(V^*=v \) is conditioned on.
 If the value for \(V \) is missing, \(V^*=\text{missing} \) is conditioned on.
- \(V^* \) is always always observed.
A drug that just makes people sicker and so drop out, giving missing data. Missingness depends on whether they are sick after:

- Sick_before
- Take_drug
- Sick_after
- Sick_after*
- M_Sick_after
- Sick_after*
This could be trained using expectation maximization (EM) with *Sick_after* unobserved, however:

- There are many distributions consistent with the data: all of the unobserved could be very sick after none could be sick after taking the drug.
- EM could converge to any of these.
- EM makes up fiction about those with missing data.
- We need to determine why the data is missing.
A distribution is recoverable or identifiable from missing data if the distribution can be accurately measured from the data, even with parts of the data missing.

Data for V is missing completely at random (MCAR) if V and M_*V are independent. Missing data can be ignored.

Variable Y is missing at random (MAR), when Y is independent of M_*Y given observed variables V_o.

$$P(Y \mid V_o, M_*Y) = P(Y \mid V_o)$$

then $P(Y, V_o) = P(Y \mid V_o, M_*Y=false)P(V_o)$

In other cases (e.g., previous case) the distribution may not be recoverable, depending on the graph structure.
Education is observed but Income might have missing values:
(a) completely at random
(b) missing at random
(c) missing not at random
Education is observed but Income might have missing values:

(a) completely at random

\[P(\text{Income}, \text{Education}) = P(\text{Income}^*, \text{Education} | \text{M_Income} = \text{false}) \]
Recoverability

Education is observed but Income might have missing values:

(b) missing at random

\[
P(\text{Income, Education})
\]

\[
= P(\text{Income} \mid \text{Education}) \times P(\text{Education})
\]

\[
= P(\text{Income} \mid \text{Education} \land \text{M_Income} = \text{false}) \times P(\text{Education})
\]

\[
= P(\text{Income}^* \mid \text{Education} \land \text{M_Income} = \text{false}) \times P(\text{Education})
\]
Education is observed but Income might have missing values:
(c) missing not at random (MNAR).

- In this graph, the relationship between income and education cannot be estimated from data.
- EM (and related algorithms) converge to fiction.
- In some cases of MNAR, probabilities can be computed, depending on the graph structure.