
Learning a Belief Network

If you
▶ know the structure
▶ have observed all of the variables
▶ have no missing data

you can learn each conditional probability separately.

−→ supervised learning
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Learning belief network example

Model Data → Probabilities

A B

E

C D

A B C D E

t f t t f
f t t t t
t t f t f

· · ·

P(A)
P(B)
P(E | A,B)
P(C | E )
P(D | E )
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Learning conditional probabilities

Each conditional probability distribution can be learned
separately:

For example:

P(E = t | A = t ∧ B = f )

=
(#examples: E = t ∧ A = t ∧ B = f ) + c1

(#examples: A = t ∧ B = f ) + c

where c1 and c reflect prior (expert) knowledge (c1 ≤ c).

When there are many parents to a node, there can little or no
data for each conditional probability: use supervised learning
to learn a decision tree, linear classifier, a neural network or
other representation of the conditional probability.
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Unobserved Variables

B

H

A

C

What if you had only observed
values for A, B, C?

A B C

t f t
f t t
t t f

· · ·
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EM Algorithm

Model Augmented Data Probabilities

B

H

A

C

A B C H Count

t f t t 0.7
t f t f 0.3
f t t f 0.9
f t t t 0.1

· · · · · ·

E-step

M-step

P(A)
P(H | A)
P(B | H)
P(C | H)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 10.3 5 / 18



EM Algorithm

Repeat the following two steps:
▶ E-step give the expected number of data points for the

unobserved variables based on the given probability
distribution. Requires probabilistic inference.

▶ M-step infer the (maximum likelihood) probabilities from the
data. This is the same as the fully-observable case.

Start either with made-up data or made-up probabilities.

EM will converge to a local maxima.
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Belief network structure learning (I)

Given examples e, and model m:

P(m | e) = P(e | m) ∗ P(m)

P(e).

A model here is a belief network.

A bigger network can always fit the data better.

P(m) lets us encode a preference for simpler models (e.g,
smaller networks)

−→ search over network structure looking for the most likely
model.

Taking logarithms (and negating):

argmax
m

P(m | e) = argmin
m

(− logP(e | m)− logP(m))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 10.3 7 / 18



Description Length

Bayes Rule:

P(h|d) ∝ P(d |h)P(h)

argmax
h

P(h|d) = argmax
h

P(d |h)P(h)

= argmax
h

(logP(d |h) + logP(h))

logP(d |h) measures fit to data

logP(h) measures model complexity
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Information theory overview

A bit is a binary digit.

1 bit can distinguish 2 items

k bits can distinguish 2k items

n items can be distinguished using log2 n bits

Can you do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, c, d} with

P(a) =
1

2
,P(b) =

1

4
,P(c) =

1

8
,P(d) =

1

8

Consider the code:

a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a) ∗ 1 + P(b) ∗ 2 + P(c) ∗ 3 + P(d) ∗ 3

=
1

2
+

2

4
+

3

8
+

3

8
= 1

3

4
bits.

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string adcabba
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Information Content

To identify x , you need − log2 P(x) bits.

Given a distribution over a set of values, to identify a
member, the expected number of bits is∑

x

−P(x) ∗ log2 P(x)

is the information content or entropy of the distribution.

The expected number of bits it takes to describe a
distribution given evidence e:

I (e) =
∑
x

−P(x |e) ∗ log2 P(x |e).
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Information Gain

Given a test that can distinguish the cases where α is true from
the cases where α is false, the information gain from this test is:

I (true)− (P(α) ∗ I (α) + P(¬α) ∗ I (¬α)).

I (true) is the expected number of bits needed before the test

P(α) ∗ I (α) + P(¬α) ∗ I (¬α) is the expected number of bits
after the test.
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Comparing Distributions

Suppose a code is designed to be optimal for probability
distribution Q, so that x is described using −log2Q(x) bits.

Suppose P is another probability distribution. The expected
number of bits to describe P using the code for Q is∑

x

−P(x) ∗ log2Q(x)

The difference between this and the entropy of P —
describing P using its optimal code – is the Kullback–Leibler
(KL) divergence (also called relative entropy):

DKL(P || Q) = (
∑
x

−P(x) ∗ logQ(x))−
∑
x

−P(x) ∗ logP(x)

=
∑
x

−P(x) ∗ log(Q(x)/P(x))

When is this large? When P(x) ≫ Q(x) for some x .
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A belief network structure learning algorithm

Search over total orderings of variables.

For each total ordering X1, . . . ,Xn use supervised learning to
learn P(Xi | X1 . . .Xi−1).

Return the network model found with minimum:
− logP(e | m)− logP(m)
▶ P(e | m) can be obtained by inference.
▶ How to determine − logP(m)?
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Bayesian Information Criterion (BIC) Score

P(m | e) = P(e | m) ∗ P(m)

P(e)

− logP(m | e) ∝ − logP(e | m)− logP(m)

− logP(e | m) is the negative log likelihood of model m:
number of bits to describe the data in terms of the model.

|e| is the number of examples. Each proposition can be true
for between 0 and |e| examples, so
there are |e|+ 1 different probabilities to distinguish.
Each one can be described in log(|e|+ 1) ≈ log(|e|) bits.
If there are ||m|| independent parameters
(||m|| is the dimensionality of the model):

− logP(m | e) ∝ − logP(e | m) + ||m|| log(|e|)

This is the Bayesian Information Criterion (BIC) score.
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Belief network structure learning (II)

Given a total ordering, to determine parents(Xi ) do
independence tests to determine which features should be the
parents

XOR problem: just because features do not give information
individually, does not mean they will not give information in
combination

Search over total orderings of variables
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Missing Data

You cannot just ignore missing data unless you know it is
missing at random.

Is the reason data is missing correlated with something of
interest?

For example: data in a clinical trial to test a drug may be
missing because:
▶ the patient dies
▶ the patient had severe side effects
▶ the patient was cured
▶ the patient had to visit a sick relative.

— ignoring some of these may make the drug look better or
worse than it is.

In general you need to model why data is missing (see
Chapter 11)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 10.3 17 / 18



General Learning of Belief Networks

We have a mixture of observational data and data from
randomized studies.

We are not given the structure.

We don’t know whether there are hidden variables or not.
We don’t know the domain size of hidden variables.

There is missing data.

. . . this is too difficult for current techniques!
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