Learning a Belief Network

o If you
» know the structure
» have observed all of the variables
» have no missing data

@ you can learn each conditional probability separately.

— supervised learning

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 10.3



Learning belief network example

Model Data — Probabilities

A B C D E P(A)
@ t f t t f P(B)
f t t t t P(E | A, B)
@ @ t t f t f P(C ’ E)
P(D | E)
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Learning conditional probabilities

@ Each conditional probability distribution can be learned
separately:

@ For example:
P(E=t|A=tAB=f)
(#examples: E=tNA=tAB=f)+a
(#examples: A=tAB=f)+c
where ¢; and c reflect prior (expert) knowledge (¢ < ¢).

@ When there are many parents to a node, there can little or no
data for each conditional probability: use supervised learning
to learn a decision tree, linear classifier, a neural network or
other representation of the conditional probability.
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Unobserved Variables

@ What if you had only observed
values for A, B, C?
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EM Algorithm

Model Augmented Data Probabilities
@ A B C H| Count
l t f t t]07 E-step P(A)
VR
REE r
f t t t |01 P(B | H)
e e M-step
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EM Algorithm

@ Repeat the following two steps:

» E-step give the expected number of data points for the
unobserved variables based on the given probability
distribution. Requires probabilistic inference.

» M-step infer the (maximum likelihood) probabilities from the
data. This is the same as the fully-observable case.

@ Start either with made-up data or made-up probabilities.

@ EM will converge to a local maxima.
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Belief network structure learning (1)

Given examples e, and model m:

P(e | m)* P(m)
P(e).

P(m|e)=

@ A model here is a belief network.
@ A bigger network can always fit the data better.

@ P(m) lets us encode a preference for simpler models (e.g,
smaller networks)

—— search over network structure looking for the most likely
model.

e Taking logarithms (and negating):

argmax P(m | e) = arg min(— log P(e | m) — log P(m))
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Description Length

Bayes Rule:
P(h|d) < P(d|h)P(h)
argmﬁxP(h|d) = argmﬁxP(d|h)P(h)

= arg mﬁx(log P(d|h) + log P(h))

o log P(d|h) measures fit to data

o log P(h) measures model complexity
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Information theory overview

A bit is a binary digit.
1 bit can distinguish 2 items
k bits can distinguish 2% items

n items can be distinguished using log, n bits

Can you do better?
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Information and Probability

Consider a code to distinguish elements of {a, b, ¢, d} with

1 1 1 1
P(a)==,P(b)==.P(c)==,P ==
(a) = 5. P(b) = 3. P(e) = 5. P(d) = ¢
Consider the code:
a 0 b 10 c 110 d 111

This code uses 1 to 3 bits. On average, it uses

P(a)*1+ P(b)*x2+ P(c)*3+ P(d) %3
L T e
2 4 8 8 4
The string aacabbda has code 00110010101110.

The code 0111110010100 represents string adcabba
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Information Content

e To identify x, you need — log, P(x) bits.

@ Given a distribution over a set of values, to identify a
member, the expected number of bits is

Z —P(x) * logy P(x)

is the information content or entropy of the distribution.

@ The expected number of bits it takes to describe a
distribution given evidence e:

I(e) = —P(x|e) x logy P(xle).
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Information Gain

Given a test that can distinguish the cases where « is true from
the cases where « is false, the information gain from this test is:

I(true) — (P(«) * I(a) + P(—a) * 1(—av)).

o /(true) is the expected number of bits needed before the test

o P(a)x I(a) + P(—a) * I(—a) is the expected number of bits
after the test.
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Comparing Distributions

@ Suppose a code is designed to be optimal for probability
distribution Q, so that x is described using —/logx Q(x) bits.

@ Suppose P is another probability distribution. The expected
number of bits to describe P using the code for Q is

Z —P(x) * logy Q(x)

@ The difference between this and the entropy of P —
describing P using its optimal code — is the Kullback—Leibler
(KL) divergence (also called relative entropy):

Dt (P || Q) = (Z —P(x) xlog Q(x)) = Y _ —P(x) x log P(x)

X

—Z P(x) * log(Q(x)/P(x))

@ When is this large? When P(x) > Q(x) for some x.
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A belief network structure learning algorithm

@ Search over total orderings of variables.
@ For each total ordering Xi,..., X, use supervised learning to
learn P(X,‘ ‘ X1 . X,'_l).
@ Return the network model found with minimum:
—log P(e | m) — log P(m)
» P(e | m) can be obtained by inference.
» How to determine — log P(m)?
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Bayesian Information Criterion (BIC) Score

P(e | m)* P(m)
P(e)
—log P(m | ) o — log P(e | m) — log P(m)

P(m|e)=

e —log P(e| m) is the negative log likelihood of model m:
number of bits to describe the data in terms of the model.
@ |e| is the number of examples. Each proposition can be true
for between 0 and |e| examples, so
there are |e| + 1 different probabilities to distinguish.
Each one can be described in log(|e| + 1) ~ log(|e|) bits.
o If there are ||m|| independent parameters
(|Im|| is the dimensionality of the model):

—log P(m | &)  — log P(e | m) + |m]| log(Je])

This is the Bayesian Information Criterion (BIC) score.
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Belief network structure learning (I1)

e Given a total ordering, to determine parents(X;) do
independence tests to determine which features should be the
parents

@ XOR problem: just because features do not give information
individually, does not mean they will not give information in
combination

@ Search over total orderings of variables
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@ You cannot just ignore missing data unless you know it is
missing at random.

@ Is the reason data is missing correlated with something of
interest?
@ For example: data in a clinical trial to test a drug may be
missing because:
» the patient dies
» the patient had severe side effects
» the patient was cured
» the patient had to visit a sick relative.
— ignoring some of these may make the drug look better or
worse than it is.

@ In general you need to model why data is missing (see
Chapter 11)
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General Learning of Belief Networks

@ We have a mixture of observational data and data from
randomized studies.

@ We are not given the structure.

@ We don’'t know whether there are hidden variables or not.
We don't know the domain size of hidden variables.

@ There is missing data.

... this is too difficult for current techniques!
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