- The target features are not given in the training examples
- The aim is to construct a natural classification that can be used to predict features of the data.

1/19

- The target features are not given in the training examples
- The aim is to construct a natural classification that can be used to predict features of the data.
- The examples are partitioned in into clusters or classes. Each class predicts feature values for the examples in the class.
 - In hard clustering each example is placed definitively in a class.
 - In soft clustering each example has a probability distribution over its class.
- Each clustering has a prediction error on the examples. The best clustering is the one that minimizes the error.

The *k*-means algorithm is used for hard clustering. Inputs:

- training examples
- the number of classes, k

Outputs:

- a prediction of a value for each feature for each class
- an assignment of examples to classes

- E is the set of all examples
- the input features are X₁,..., X_n
 X_j(e) is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \ldots, k\}$.

- E is the set of all examples
- the input features are X₁,..., X_n
 X_j(e) is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \ldots, k\}$.

The k-means algorithm outputs

- function $class : E \to \{1, \dots, k\}$. class(e) = i means e is in class i.
- prediction $\widehat{X}_{j}(i)$ for each feature X_{j} and class *i*.

- E is the set of all examples
- the input features are X₁,..., X_n
 X_j(e) is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \ldots, k\}$.

The k-means algorithm outputs

- function $class : E \to \{1, \dots, k\}$. class(e) = i means e is in class i.
- prediction $\widehat{X}_{j}(i)$ for each feature X_{j} and class *i*.

The sum-of-squares error for *class* and $\widehat{X}_{j}(i)$ is

- E is the set of all examples
- the input features are X₁,..., X_n
 X_j(e) is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \ldots, k\}$.

The k-means algorithm outputs

- function $class: E \to \{1, \dots, k\}$. class(e) = i means e is in class i.
- prediction $\widehat{X}_{j}(i)$ for each feature X_{j} and class *i*.

The sum-of-squares error for *class* and $\widehat{X}_{j}(i)$ is

$$\sum_{e \in E} \sum_{j=1}^n \left(\widehat{X}_j(class(e)) - X_j(e)
ight)^2.$$

Aim: find *class* and prediction function that minimize sum-of-squares error.

3/19

The sum-of-squares error for *class* and $\widehat{X}_{j}(i)$ is

$$\sum_{e \in E} \sum_{j=1}^n \left(\widehat{X}_j(class(e)) - X_j(e) \right)^2.$$

• Given *class*, the \widehat{X}_j that minimizes the sum-of-squares error is

The sum-of-squares error for *class* and $\widehat{X}_j(i)$ is

$$\sum_{e\in E}\sum_{j=1}^n \left(\widehat{X}_j(class(e)) - X_j(e)\right)^2.$$

• Given *class*, the \widehat{X}_j that minimizes the sum-of-squares error is the mean value of X_j for that class.

The sum-of-squares error for *class* and $\widehat{X}_j(i)$ is

$$\sum_{e \in E} \sum_{j=1}^n \left(\widehat{X}_j(class(e)) - X_j(e) \right)^2.$$

- Given *class*, the \widehat{X}_j that minimizes the sum-of-squares error is the mean value of X_j for that class.
- Given \widehat{X}_j for each j, each example can be assigned to the class that

The sum-of-squares error for *class* and $\widehat{X}_j(i)$ is

$$\sum_{e \in E} \sum_{j=1}^n \left(\widehat{X}_j(class(e)) - X_j(e) \right)^2.$$

- Given *class*, the \widehat{X}_j that minimizes the sum-of-squares error is the mean value of X_j for that class.
- Given \widehat{X}_j for each *j*, each example can be assigned to the class that minimizes the error for that example.

k-means algorithm

Initially, randomly assign the examples to the classes.

5/19

5/19

• For each class i and feature X_j , let

$$\widehat{X}_{j}(i) \leftarrow rac{\sum_{e:class(e)=i} X_{j}(e)}{|\{e:class(e)=i\}|}$$

(the prediction of class *i* on feature X_j)

• For each class i and feature X_j , let

$$\widehat{X}_j(i) \leftarrow rac{\sum_{e:class(e)=i} X_j(e)}{|\{e:class(e)=i\}|}$$

(the prediction of class *i* on feature X_j)

• For each example e, assign e to the class i that minimizes

$$\sum_{j=1}^n \left(\widehat{X}_j(i) - X_j(e)\right)^2.$$

until

• For each class i and feature X_j , let

$$\widehat{X}_j(i) \leftarrow rac{\sum_{e:class(e)=i} X_j(e)}{|\{e:class(e)=i\}|}$$

(the prediction of class *i* on feature X_j)

• For each example e, assign e to the class i that minimizes

$$\sum_{j=1}^n \left(\widehat{X}_j(i) - X_j(e)\right)^2.$$

until the second step does not change the assignment of any example.

- cc[c] is the number of examples in class c,
- fs[j, c] is the sum of the values for $X_j(e)$ for examples in class c.

then define pn(j, c), current estimate of $\widehat{X}_j(c)$

pn(j, c) =

- cc[c] is the number of examples in class c,
- fs[j, c] is the sum of the values for $X_j(e)$ for examples in class c.

then define pn(j, c), current estimate of $\widehat{X}_j(c)$

pn(j,c) = fs[j,c]/cc[c]

- cc[c] is the number of examples in class c,
- fs[j, c] is the sum of the values for $X_j(e)$ for examples in class c.

then define pn(j, c), current estimate of $\widehat{X}_j(c)$

pn(j,c) = fs[j,c]/cc[c]

class(e) =

- cc[c] is the number of examples in class c,
- *fs*[*j*, *c*] is the sum of the values for X_j(*e*) for examples in class *c*.

then define pn(j, c), current estimate of $\widehat{X}_j(c)$

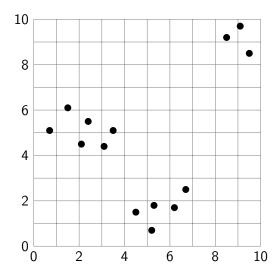
$$pn(j, c) = fs[j, c]/cc[c]$$

$$class(e) = \arg\min_{c} \sum_{j=1}^{n} (pn(j,c) - X_j(e))^2$$

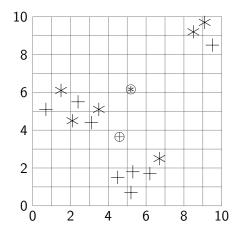
These can be updated in one pass through the training data.

< 🗆 I

1: procedure k-means(Xs, Es, k) Initialize *fs* and *cc* randomly (based on data) 2: def pn(j,c) = fs[j,c]/cc[c]3: def $class(e) = \arg\min_c \sum_{i=1}^n (pn(j, c) - X_i(e))^2$ 4: 5: repeat 6: fsn and ccn initialized to be all zero 7: for each example $e \in Es$ do c := class(e)8: ccn[c] + = 19: for each feature $X_i \in Xs$ do 10: $fsn[i, c] + = X_i(e)$ 11: stable := (fsn = fs) and (ccn = cc)12: fs := fsn13: 14: cc := ccnuntil stable 15: return class, pn 16:



Random Assignment to Classes



 \oplus is mean of + and \circledast is mean of *

Image: Ima

Assign Each Example to Closest Mean

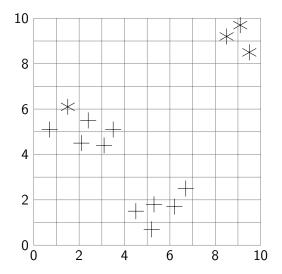
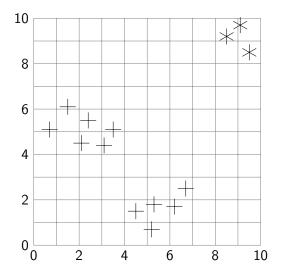


Image: Ima

Ressign Each Example to Closest Mean



• An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.
- It is not guaranteed to converge to a global minimum.

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.
- It is not guaranteed to converge to a global minimum.
- It is sensitive to the relative scale of the dimensions.

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.
- It is not guaranteed to converge to a global minimum.
- It is sensitive to the relative scale of the dimensions.
- Increasing k can always decrease error (but does not always) until k is the number of different examples. How?

- An assignment of examples to classes is stable if running both the *M* step and the *E* step does not change the assignment.
- This algorithm will eventually converge to a stable local minimum.
- Any permutation of the labels of a stable assignment is also a stable assignment.
- It is not guaranteed to converge to a global minimum.
- It is sensitive to the relative scale of the dimensions.
- Increasing k can always decrease error (but does not always) until k is the number of different examples.
 How? Given an assignment with k classes, for k + 1 classes start with the same assignment, but with the point most distant from its class center in its own new cluster.

- Used for soft clustering examples are probabilistically in classes.
- k-valued random variable C

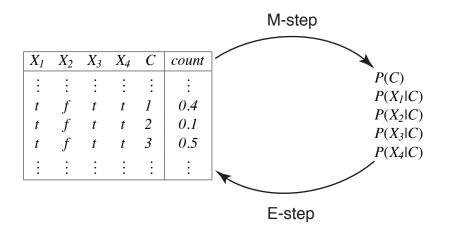
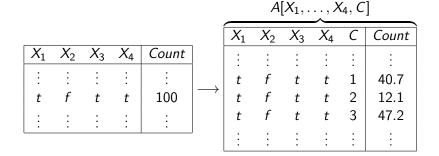


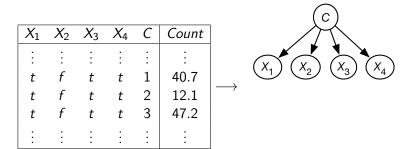
Image: Ima

- Repeat the following two steps:
 - E-step give the expected number of data points for the unobserved variables based on the given probability distribution.
 - M-step infer the (maximum likelihood or maximum aposteriori probability) probabilities from the data.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

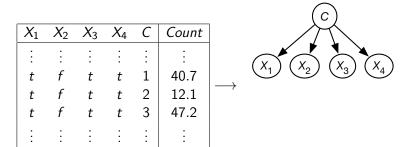
Augmented Data — E step

Suppose
$$k = 3$$
, and $dom(C) = \{1, 2, 3\}$.
 $P(C = 1 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.407$
 $P(C = 2 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.121$
 $P(C = 3 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.472$:





17 / 19



$$P(C=c)$$
$$P(X_i = v | C=c)$$

Image: Ima

- cc, a k-valued array, cc[c] is the sum of the counts for class=c.
- fc, a 3-dimensional array such that fc[i, v, c], is the sum of the counts of the augmented examples t with X_i(t) = val and class(t) = c.

- cc, a k-valued array, cc[c] is the sum of the counts for class=c.
- fc, a 3-dimensional array such that fc[i, v, c], is the sum of the counts of the augmented examples t with X_i(t) = val and class(t) = c.
- The probabilites can be computed by:

- cc, a k-valued array, cc[c] is the sum of the counts for class=c.
- fc, a 3-dimensional array such that fc[i, v, c], is the sum of the counts of the augmented examples t with X_i(t) = val and class(t) = c.
- The probabilites can be computed by:

$$P(C=c) = \frac{cc[c]}{|Es|}$$
$$P(X_i = v | C=c) = \frac{fc[i, v, c]}{cc[c]}$$

1: procedure
$$EM(Xs, Es, k)$$

2: $cc[c] := 0; fc[i, v, c] := 0$
3: repeat
4: $cc_new[c] := 0; fc_new[i, v, c] := 0$
5: for each example $\langle v_1, ..., v_n \rangle \in Es$ do
6: for each $c \in [1, k]$ do
7: $dc := P(C = c \mid X_1 = v_1, ..., X_n = v_n)$
8: $cc_new[c] := cc_new[c] + dc$
9: for each $i \in [1, n]$ do
10: $fc_new[i, v_i, c] := fc_new[i, v_i, c] + dc$
11: $stable := (cc \approx cc_new)$ and $(fc \approx fc_new)$
12: $cc := cc_new$
13: $fc := fc_new$
14: until stable
15: return cc,fc