
Clustering / Unsupervised Learning

The target features are not given in the training examples

The aim is to construct a natural classification that can be
used to predict features of the data.

The examples are partitioned in into clusters or classes. Each
class predicts feature values for the examples in the class.
▶ In hard clustering each example is placed definitively in a class.
▶ In soft clustering each example has a probability distribution

over its class.

Each clustering has a prediction error on the examples. The
best clustering is the one that minimizes the error.
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k-means algorithm

The k-means algorithm is used for hard clustering.
Inputs:

training examples

the number of classes, k

Outputs:

a prediction of a value for each feature for each class

an assignment of examples to classes
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k-means algorithm formalized

E is the set of all examples

the input features are X1, . . . ,Xn

Xj(e) is the value of feature Xj for example e.

there is a class for each integer i ∈ {1, . . . , k}.

The k-means algorithm outputs

function class : E → {1, . . . , k}.
class(e) = i means e is in class i .

prediction X̂j(i) for each feature Xj and class i .

The sum-of-squares error for class and X̂j(i) is

∑
e∈E

n∑
j=1

(
X̂j(class(e))− Xj(e)

)2
.

Aim: find class and prediction function that minimize
sum-of-squares error.
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Minimizing the error

The sum-of-squares error for class and X̂j(i) is

∑
e∈E

n∑
j=1

(
X̂j(class(e))− Xj(e)

)2
.

Given class, the X̂j that minimizes the sum-of-squares error is

the mean value of Xj for that class.

Given X̂j for each j , each example can be assigned to the class
that minimizes the error for that example.
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k-means algorithm

Initially, randomly assign the examples to the classes.

Repeat the following two steps:

For each class i and feature Xj , let

X̂j(i)←
∑

e:class(e)=i Xj(e)

|{e : class(e) = i}|

(the prediction of class i on feature Xj)

For each example e, assign e to the class i that minimizes

n∑
j=1

(
X̂j(i)− Xj(e)

)2
.

until the second step does not change the assignment of any
example.
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k-means algorithm

Sufficient statistics:

cc[c] is the number of examples in class c ,

fs[j , c] is the sum of the values for Xj(e) for examples in class
c .

then define pn(j , c), current estimate of X̂j(c)

pn(j , c) =

fs[j , c]/cc[c]

class(e) = argmin
c

n∑
j=1

(pn(j , c)− Xj(e))
2

These can be updated in one pass through the training data.
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1: procedure k-means(Xs,Es, k)
2: Initialize fs and cc randomly (based on data)
3: def pn(j , c) = fs[j , c]/cc[c]
4: def class(e) = argminc

∑n
j=1 (pn(j , c)− Xj(e))

2

5: repeat
6: fsn and ccn initialized to be all zero
7: for each example e ∈ Es do
8: c := class(e)
9: ccn[c]+ = 1

10: for each feature Xj ∈ Xs do
11: fsn[j , c]+ = Xj(e)

12: stable := (fsn=fs) and (ccn=cc)
13: fs := fsn
14: cc := ccn
15: until stable
16: return class, pn
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Example Data

0 2 4 6 8 10
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Random Assignment to Classes

⊕

⊛

0 2 4 6 8 10
0
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4

6
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10

⊕ is mean of + and ⊛ is mean of ∗
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Assign Each Example to Closest Mean
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Ressign Each Example to Closest Mean
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Properties of k-means

An assignment of examples to classes is stable if running both
the M step and the E step does not change the assignment.

This algorithm will eventually converge to a stable local
minimum.

Any permutation of the labels of a stable assignment is also a
stable assignment.

It is not guaranteed to converge to a global minimum.

It is sensitive to the relative scale of the dimensions.

Increasing k can always decrease error (but does not always)
until k is the number of different examples.
How? Given an assignment with k classes, for k + 1 classes
start with the same assignment, but with the point most
distant from its class center in its own new cluster.
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EM Algorithm

Used for soft clustering — examples are probabilistically in
classes.

k-valued random variable C

Model Data ➪ Probabilities

C

X1 X2 X3 X4

X1 X2 X3 X4

t f t t
f t t f
f f t t

· · ·

P(C )
P(X1|C )
P(X2|C )
P(X3|C )
P(X4|C )
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EM Algorithm

X1 X2 X3 X4 C count
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

P(C)
P(X1|C)
P(X2|C)
P(X3|C)
P(X4|C)

M-step

E-step
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EM Algorithm Overview

Repeat the following two steps:
▶ E-step give the expected number of data points for the

unobserved variables based on the given probability
distribution.

▶ M-step infer the (maximum likelihood or maximum aposteriori
probability) probabilities from the data.

Start either with made-up data or made-up probabilities.

EM will converge to a local maxima.
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Augmented Data — E step

Suppose k = 3, and dom(C ) = {1, 2, 3}.
P(C = 1|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.407
P(C = 2|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.121
P(C = 3|X1 = t,X2 = f ,X3 = t,X4 = t) = 0.472:

X1 X2 X3 X4 Count
...

...
...

...
...

t f t t 100
...

...
...

...
...

−→

A[X1, . . . ,X4,C ]︷ ︸︸ ︷
X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40.7
t f t t 2 12.1
t f t t 3 47.2
...

...
...

...
...

...
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M step

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 40.7
t f t t 2 12.1
t f t t 3 47.2
...

...
...

...
...

...

−→

C

X1 X2 X3 X4

P(C=c)

P(Xi = v |C=c)
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EM sufficient statistics

cc , a k-valued array, cc[c] is the sum of the counts for
class=c .

fc , a 3-dimensional array such that fc[i , v , c], is the sum of
the counts of the augmented examples t with Xi (t) = val and
class(t) = c .

The probabilites can be computed by:

P(C=c) =
cc[c]

|Es|

P(Xi = v |C=c) =
fc[i , v , c]

cc[c]
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1: procedure EM(Xs,Es, k)
2: cc[c] := 0; fc[i , v , c] := 0
3: repeat
4: cc new [c] := 0; fc new [i , v , c] := 0
5: for each example ⟨v1, . . . , vn⟩ ∈ Es do
6: for each c ∈ [1, k] do
7: dc := P(C = c | X1 = v1, . . . ,Xn = vn)
8: cc new [c] := cc new [c] + dc
9: for each i ∈ [1, n] do

10: fc new [i , vi , c] := fc new [i , vi , c] + dc

11: stable := (cc ≈ cc new) and (fc ≈ fc new)
12: cc := cc new
13: fc := fc new
14: until stable
15: return cc,fc
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