## Model Averaging (Bayesian Learning)

We want to predict the output $Y$ of a new case that has input $X=x$ given the training examples Es:

$$
\begin{aligned}
p(Y \mid x \wedge E s) & =\sum_{m \in M} P(Y \wedge m \mid x \wedge E s) \\
& =\sum_{m \in M} P(Y \mid m \wedge x \wedge E s) P(m \mid x \wedge E s) \\
& =\sum_{m \in M} P(Y \mid m \wedge x) P(m \mid E s)
\end{aligned}
$$

$M$ is a set of mutually exclusive and covering models (hypotheses).

- What assumptions are made here?


## Probabilistic Learning

- The posterior probability of a model $m$ given training examples Es:

$$
P(m \mid E s)=\frac{P(E s \mid m) \times P(m)}{P(E s)}
$$

- The likelihood, $P(E s \mid m)$, is the probability that model $m$ would have produced examples Es.
- The prior, $P(m)$, encodes a learning bias
- $P(E s)$ is a normalizing constant so the probabilities of the models sum to 1 .
- You could try to fit the training data as well as possible by picking the maximum likelihood model, but that overfits.


## Independent and Identically Distributed

- Examples $E s=\left[e_{1}, \ldots, e_{k}\right]$ are independent and identically distributed (i.i.d.) given model $m$ if

$$
P(E s \mid m)=\prod_{i=1}^{k} P\left(e_{i} \mid m\right)
$$



- Conditioning on the observed $e_{i}$ and querying an unobserved $e_{j}$ provides a probabilistic prediction for unseen examples.
- Conditioning on the observed $e_{i}$ and querying $m$ provides a distribution over models.


## Learning probabilities - the simplest case

Observe tosses of thumbtack:
$n_{0}$ instances of Heads $=$ false
$n_{1}$ instances of Heads $=$ true what should we use as $P$ (heads)?

Tails Heads


- Empirical frequency: $P($ heads $)=\frac{n_{1}}{n_{0}+n_{1}}$
- Laplace smoothing [1812]: $P($ heads $)=\frac{n_{1}+1}{n_{0}+n_{1}+2}$
- Informed priors: $P($ heads $)=\frac{n_{1}+c_{1}}{n_{0}+n_{1}+c_{0}+c_{1}}$ for some informed pseudo counts $c_{0}, c_{1}>0$. $c_{0}=1, c_{1}=1$, expressed ignorance (uniform prior)
Pseudo-counts convey prior knowledge. Consider: "how much more would I believe $\alpha$ if I had seen one example with $\alpha$ true than if I has seen no examples with $\alpha$ true?"
- empirical frequency overfits to the data.


## Example of Overfitting

- Consider a web site where people rate restaurants with 1 to 5 stars.
- We want to report the most liked restaurant(s) - the one predicted to have the best future ratings.
- How can we determine the most liked restaurant?
- Are the restaurants with the highest average rating the most liked restaurants?
- Which restaurants have the highest average rating?
- Which restaurants have a rating of 5 ?
- Only restaurants with few ratings have an average rating of 5 .
- Solution: add some "average" ratings for each restaurant!


## Bayesian Learning of Probabilities


aipython.org: coinTossBN in learnBayesian.py

- Probablity_of_Heads is a random variable representing the probability of heads.
- Domain is $\{0.0,0.1,0.2, \ldots, 0.9,1.0\}$ or interval $[0,1]$.
- $P($ Toss\# $n=$ Heads $\mid$ Probablity_of_Heads=v) $=v$
- Toss $\# i$ is independent of Toss $\# j$ (for $i \neq j$ ) given Probablity_of_Heads
- i.i.d. or independent and identically distributed.


## Bayesian Learning of Probabilities

- $Y$ has two outcomes $y$ and $\neg y$.

We want the probability of $y$ given training examples Es.

- Treat the probability of $y$ as a real-valued random variable on the interval $[0,1]$, called $\phi$. Bayes' rule gives:

$$
P(\phi=p \mid E s)=\frac{P(E s \mid \phi=p) \times P(\phi=p)}{P(E s)}
$$

- Suppose Es is a sequence of $n_{1}$ instances of $y$ and $n_{0}$ instances of $\neg y$ :

$$
P(E s \mid \phi=p)=p^{n_{1}} \times(1-p)^{n_{0}}
$$

- Uniform prior: $P(\phi=p)=1$ for all $p \in[0,1]$.


## Posterior Probabilities for Different Training Examples (beta distribution)



AIPython.org see probBeta.py

- The mode is the empirical average.
- The expected value is Laplace smoothing (pseudo-count of 1 ).


## Beta Distribution

$$
\operatorname{Beta}^{\alpha_{0}, \alpha_{1}}(p)=\frac{1}{K} p^{\alpha_{1}-1} \times(1-p)^{\alpha_{0}-1}
$$

where $K$ is a normalizing constant. $\alpha_{i}>0$.

- The uniform distribution on $[0,1]$ is Beta ${ }^{1,1}$.
- The expected value is $\alpha_{1} /\left(\alpha_{0}+\alpha_{1}\right)$.
- If the prior probability of a Boolean variable is Beta ${ }^{\alpha_{0}, \alpha_{1}}$, the posterior distribution after observing $n_{1}$ true cases and $n_{0}$ false cases is:

$$
\operatorname{Beta}^{\alpha_{0}+n_{0}, \alpha_{1}+n_{1}}
$$

- If the prior is of the form of a beta distribution, so is the posterior - called a conjugate distribution.


## Categorical Variables

- Suppose $Y$ is a categorical variable with $k$ possible values.
- A distribution over a categorical variable is called a multinomial distribution.
- The Dirichlet distribution is the generalization of the beta distribution to cover categorical variables.
- A Dirichlet distribution has form:

$$
\text { Dirichlet }^{\alpha_{1}, \ldots, \alpha_{k}}\left(p_{1}, \ldots, p_{k}\right)=\frac{\prod_{j=1}^{k} p_{j}^{\alpha_{j}-1}}{Z}
$$

where

- $p_{i}$ is the probability of the $i$ th outcome (and so $0 \leq p_{i} \leq 1$ )
- $\alpha_{i}$ is a positive real number (a "count")
- $Z$ is a normalizing constant that ensures the integral over all the probability values is 1 .


## Probabilities from Experts

Problems with using probabilities from experts for cases with little data or poor data - e.g., medical diagnosis from health records:

- experts are reluctant to give a precise number
- representing the uncertainty of a probability estimate
- combining the estimates from multiple experts
- combining expert opinion with actual data.

Instead of giving a real number for the probability of proposition $\alpha$, an expert gives a pair $\langle n, m\rangle$ of numbers, interpreted as though the expert had observed $n$ occurrences of $\alpha$ out of $m$ trials.

- the numbers from different experts can be added
- the number can be combined with real data
- the effective sample size $(m)$ can be tuned to reflect expertise.


## Probabilistic Classifiers

- A Bayes classifier is a probabilistic model that is used for supervised learning.
- idea: the role of a class is to predict the values of features for members of that class.
- In a naive Bayes classifier the input features are conditionally independent of each other given the classification.
Example: Suppose an agent wants to predict the user action based on properties of an online discussion:



## Naive Bayes Classifiers

With inputs $X_{1}=v_{1}, \ldots, X_{k}=v_{k}$, and classification, $Y$ :

$$
\begin{aligned}
P(y \mid & \left.X_{1}=v_{1}, \ldots, X_{k}=v_{k}\right) \\
& =\frac{P(y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid y\right)}{P(y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid y\right)+P(\neg y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid \neg y\right)} \\
& =\frac{1}{1+\frac{P(\neg y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid \neg y\right)}{P(y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid y\right)}} \\
& =\frac{1}{1-\exp \left(\log \left(\frac{P(\neg y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid \neg y\right)}{P(y) * \prod_{i=1}^{k} P\left(X_{i}=v_{i} \mid y\right)}\right)\right)} \\
& =\operatorname{sigmoid}\left(\log \left(\frac{P(y)}{P(\neg y)}\right)+\sum_{i} \log \frac{\left(X_{i}=v_{i} \mid y\right)}{\left(X_{i}=v_{i} \mid \neg y\right)}\right)
\end{aligned}
$$

is a Logistic regression model when all $X_{i}$ are observed

## Naive Bayes Classifier: User's request for help


$H$ is the help page the user is interested in.
We observe the words in the query.
What probabilities are required?
What counts are required?

- number of times each help page $h_{i}$ is the best one
- number of times word $w_{j}$ is used when $h_{i}$ is the help page.

When can the counts be updated?

- When the correct page is found.

What prior counts should be used? Can they be zero?

## Help System

- Suppose the help pages are $\left\{h_{1}, \ldots, h_{k}\right\}$.
- Words are $\left\{w_{1}, \ldots, w_{m}\right\}$.
- Bayes net requires:
- $P\left(h_{i}\right)$, these sum to $1\left(\sum_{i} P\left(h_{i}\right)=1\right)$
- $P\left(w_{j} \mid h_{i}\right)$, do not sum to one in a set-of-words model
- Maintain "counts" (pseudo counts + observed cases):
- $c_{i}$ the number of times $h_{i}$ was the correct help page
- $s=\sum_{i} c_{i}$
- $u_{i j}$ the number of times $h_{i}$ was the correct help page and word $w_{j}$ was used in the query.
- $P\left(h_{i}\right)=c_{i} / s$
- $P\left(w_{j} \mid h_{i}\right)=u_{i j} / c_{i}$


## Learning + Inference

- $Q$ is the set of words in the query.
- Learning: if $h_{i}$ is the correct page: Increment $s, c_{i}$ and $u_{i j}$ for each $w_{j} \in Q$.
- Inference:

$$
\begin{aligned}
P\left(h_{i} \mid Q\right) & \propto P\left(h_{i}\right) \prod_{w_{j} \in Q} P\left(w_{j} \mid h_{i}\right) \prod_{w_{j} \notin Q}\left(1-P\left(w_{j} \mid h_{i}\right)\right) \\
\left.\begin{array}{c}
\text { expensive } \\
\text { inference }
\end{array}\right\rangle & =\frac{c_{i}}{s} \prod_{w_{j} \in Q} \frac{u_{i j}}{c_{i}} \prod_{w_{j} \notin Q} \frac{c_{i}-u_{i j}}{c_{i}} \\
& =\frac{c_{i}}{s} \prod_{w_{j}} \frac{c_{i}-u_{i j}}{c_{i}} \prod_{w_{j} \in Q} \frac{u_{i j}}{c_{i}-u_{i j}} \\
\left.\begin{array}{c}
\text { expensive } \\
\text { learning }
\end{array}\right\rangle & =\Psi_{i} \prod_{w_{j} \in Q} \frac{u_{i j}}{c_{i}-u_{i j}}
\end{aligned}
$$

## Issues

If you were designing such a system, many issues arise such as:

- What if the most likely page isn't the correct page?
- What if the user can't find the correct page?
- What if the user mistakenly thinks they have the correct page?
- Can some pages never be found?
- What about common words?
- What about words that affect other words, e.g. "not"?
- What about new words?
- What do we do with new help pages?
- How can we transfer the language model to a new help system?

