
Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior) probability, we
could estimate its (posterior) probability.
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Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real
domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .
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Cumulative Distribution

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1

0

1
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Hoeffding’s inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is
the sample average from n independent samples; then

P(|s − p| > ϵ) ≤ 2e−2nϵ2 .

Guarantees a probably approximately correct estimate of
probability.
If you are willing to have an error greater than ϵ in less than δ of
the cases, solve 2e−2nϵ2 < δ for n, which gives

n >
− ln δ

2

2ϵ2
.

ϵ δ n

0.1 0.05 185
0.01 0.05 18,445
0.1 0.01 265
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Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before sampling X .

Given values for the parents of X , sample from the probability
of X given its parents.
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Rejection Sampling

To estimate a posterior probability given evidence
Y1= v1 ∧ . . . ∧ Yj = vj :

Reject any sample that assigns Yi to a value other than vi .

The non-rejected samples are distributed according to the
posterior probability:

P(α | evidence) ≈
∑

α is true in sample 1∑
sample 1

where we consider only samples consistent with evidence.
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Rejection Sampling Example: P(ta | sm, re)

Ta Fi

SmAl

Le

Re

Observe Sm = true,Re = true

Ta Fi Al Sm Le Re

s1 false true false true false false ✘

s2 false true true true true true ✔

s3 true false true false — — ✘

s4 true true true true true true ✔

. . .
s1000 false false false false — — ✘

P(sm) = 0.02
P(re | sm) = 0.32
There are 1000 samples.

How many are rejected?
How many are used?

Doesn’t work well when evidence is unlikely.
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Importance Sampling

Samples have weights: a real number associated with each
sample that takes the evidence into account.

Probability of a proposition is weighted average of samples:

P(α | evidence) ≈

∑
sample:α is true in sample

weight(sample)∑
sample

weight(sample)

Mix exact inference with sampling: don’t sample all of the
variables, but weight each sample according to
P(evidence | sample).
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Importance Sampling (Likelihood Weighting)

procedure likelihood weighting(Bn, e,H, n):
# Approximate P(H | e) in belief network Bn using n samples.
# H has some real domain (e.g., {0, 1})
mass := 0 # mass of all samples
hmass := 0 # weighted sum of value of H
repeat n times:

weight := 1 # weight of current sample
for each variable Xi in order:

if Xi = oi is observed
weight := weight × P(Xi = oi | parents(Xi ))

else assign Xi a random sample of P(Xi | parents(Xi ))
mass := mass + weight
hmass := hmass + weight ∗ (value of H in current assignment)

return hmass/mass
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Importance Sampling Example: P(ta | sm, re)

Ta Fi

SmAl

Le

Re

Ta Fi Al Le Weight

s1 true false true false 0.01× 0.01
s2 false true false false 0.9× 0.01
s3 false true true true 0.9× 0.75
s4 true true true true 0.9× 0.75
. . .
s1000 false false true true 0.01× 0.75

P(sm | fi) = 0.9
P(sm | ¬fi) = 0.01
P(re | le) = 0.75
P(re | ¬le) = 0.01
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Importance Sampling Example: P(le | sm, ta,¬re)

Ta Fi

SmAl

Le

Re

P(ta) = 0.02
P(fi) = 0.01
P(al | fi ∧ ta) = 0.5
P(al | fi ∧ ¬ta) = 0.99
P(al | ¬fi ∧ ta) = 0.85
P(al | ¬fi ∧ ¬ta) = 0.0001
P(sm | fi) = 0.9
P(sm | ¬fi) = 0.01
P(le | al) = 0.88
P(le | ¬al) = 0.001
P(re | le) = 0.75
P(re | ¬le) = 0.01
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Computing Expectations & Proposal Distributions

Expected value of f with respect to distribution P:

EP(f ) =
∑
w

f (w) ∗ P(w)

≈ 1

n

∑
s

f (s)

s is sampled with probability P. There are n samples.
(Expectation of variable with domain {0, 1} is its probability.)

EP(f ) =
∑
w

f (w) ∗ P(w)/Q(w) ∗ Q(w)

≈ 1

n

∑
s

f (s) ∗ P(s)/Q(s)

s is selected according the distribution Q.
The distribution Q is called a proposal distribution.
P(c) > 0 then Q(c) > 0.
Try to make Q so the weights end up far from zero.
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Particle Filtering

Importance sampling can be seen as:

for each particle:
for each variable:

sample / absorb evidence / update query

where particle is one of the samples.
Instead we could do:

for each variable:
for each particle:

sample / absorb evidence / update query

Why?

It works with infinitely many variables (e.g., HMM)

We can have a new operation of resampling
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Particle Filtering for HMMs

Start with random chosen particles (say 1000)

Sample initial states in proportion to their probability.

Repeat (as each observation arrives):
▶ Absorb evidence: weight each particle by the probability of the

evidence observation given the state of the particle.
▶ Resample: select each particle at random, in proportion to the

weight of the particle.
Some particles may be duplicated, some may be removed. All
new particles have same weight.

▶ Transition: sample the next state for each particle according to
the transition probabilities.

To answer a query about the current state, use the set of particles
as data.
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Example: Localization

Loc0 Loc1 Loc2 Loc3 Loc4

Sk0 Sk1 Sk2 Sk3 Sk4

Act0 Act1 Act2 Act3

S10 S11 S12 S13 S14… … … … ……

…

Loc consists of (x , y , θ) – position and orientation
k = 24 sonar sensors (all very noisy)
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Markov Chain Monte Carlo

To sample from a distribution P:

Create (ergodic and aperiodic) Markov chain with P as
equilibrium distribution.
Let T (Si+1 | Si ) be the transition probability.

Given state s, sample state s ′ from T (S | s)
After a while, the states sampled will be distributed according
to P.

Ignore the first samples “burn-in”
— use the remaining samples.

Samples are not independent of each other “autocorrelation”.
Sometimes use subset (e.g., 1/1000) of them “thinning”

Gibbs sampler: sample each non-observed variable from the
distribution of the variable given the current (or observed)
value of the variables in its Markov blanket.
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Gibbs Sampling Example: P(ta | sm, re)

Ta Fi

SmAl

Le

Re

Ta Fi Al Le

s1 true false false true
Select Le. Sample from P(Le | ¬al ∧ re)
s2 true false false false
Select Fi . Sample from P(Fi | ta ∧ ¬al ∧ sm)
s3 true true false false
Select Al . Sample from P(Al | ta ∧ fi ∧ ¬le)
s4 true true false false
Select Le. Sample from P(Le | ¬al ∧ re)
s5 true true false true
Select Ta. Sample from P(Ta | ¬al ∧ fi)
s6 true true false true
. . .
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