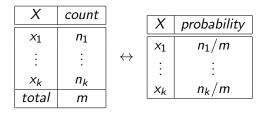
Stochastic Simulation

- Idea: probabilities ↔ samples
- Get probabilities from samples:



 If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x) = P(X \le x).$
- Select a value y uniformly in the range [0, 1].
- Select the x such that f(x) = y.

Cumulative Distribution

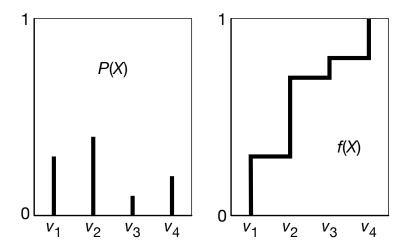


Image: 0

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon) \leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2e^{-2n\epsilon^2} < \delta$ for *n*, which gives

$$n>\frac{-\ln\frac{\delta}{2}}{2\epsilon^2}.$$

ϵ	δ	n
0.1	0.05	185
0.01	0.05	18,445
0.1	0.01	265

4/18

- Sample the variables one at a time; sample parents of X before sampling X.
- Given values for the parents of X, sample from the probability of X given its parents.

Rejection Sampling

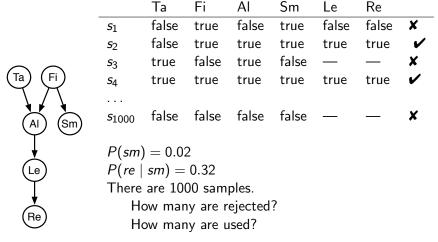
- To estimate a posterior probability given evidence $Y_1 = v_1 \land \ldots \land Y_j = v_j$:
- Reject any sample that assigns Y_i to a value other than v_i .
- The non-rejected samples are distributed according to the posterior probability:

$$P(lpha \mid evidence) pprox rac{\sum_{lpha} ext{ is true in sample } 1}{\sum_{sample} 1}$$

where we consider only samples consistent with evidence.

Rejection Sampling Example: $P(ta \mid sm, re)$

Observe Sm = true, Re = true



Doesn't work well when evidence is unlikely.

< 🗆 I

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

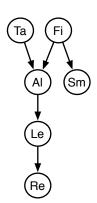
$$P(\alpha \mid evidence) \approx rac{sample: lpha ext{ is true in sample}}{\displaystyle\sum_{sample} weight(sample)}$$

• Mix exact inference with sampling: don't sample all of the variables, but weight each sample according to *P*(*evidence* | *sample*).

procedure *likelihood_weighting*(*Bn*, *e*, *H*, *n*): # Approximate $P(H \mid e)$ in belief network Bn using n samples. # H has some real domain (e.g., $\{0, 1\}$) # mass of all samples mass := 0hmass := 0# weighted sum of value of H repeat *n* times: weight := 1# weight of current sample for each variable X_i in order: if $X_i = o_i$ is observed weight := weight $\times P(X_i = o_i \mid parents(X_i))$ else assign X_i a random sample of $P(X_i | parents(X_i))$ mass := mass + weighthmass := hmass + weight * (value of H in current assignment)return hmass/mass

< 🗆 I

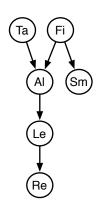
Importance Sampling Example: $P(ta \mid sm, re)$



	Ta	Fi	AI	Le	Weight	
<i>s</i> ₁	true	false	true	false	0.01 imes 0.01	
<i>s</i> ₂	false	true	false	false	0.9 imes 0.01	
<i>s</i> 3	false	true	true	true	0.9 imes 0.75	
<i>S</i> 4	true	true	true	true	0.9 imes 0.75	
<i>s</i> ₁₀₀₀	false	false	true	true	0.01 imes 0.75	
P(sm fi) = 0.9 $P(sm \neg fi) = 0.01$ P(re le) = 0.75 $P(re \neg le) = 0.01$						

< 🗆 .

Importance Sampling Example: $P(le \mid sm, ta, \neg re)$



$$P(ta) = 0.02$$

$$P(fi) = 0.01$$

$$P(a| | fi \land ta) = 0.5$$

$$P(a| | fi \land \neg ta) = 0.99$$

$$P(a| | \neg fi \land ta) = 0.85$$

$$P(a| | \neg fi \land \neg ta) = 0.0001$$

$$P(sm | fi) = 0.9$$

$$P(sm | \neg fi) = 0.01$$

$$P(le | al) = 0.88$$

$$P(le | \neg al) = 0.001$$

$$P(re | le) = 0.75$$

$$P(re | \neg le) = 0.01$$

11/18

Computing Expectations & Proposal Distributions

Expected value of f with respect to distribution P:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$
$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w) / Q(w) * Q(w)$$
$$\approx \frac{1}{n} \sum_{s} f(s) * P(s) / Q(s)$$

s is selected according the distribution Q. The distribution Q is called a proposal distribution. P(c) > 0 then Q(c) > 0. Try to make Q so the weights end up far from zero.

12/18

Importance sampling can be seen as:

```
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
```

```
for each variable:
for each particle:
sample / absorb evidence / update query
```

Why?

- It works with infinitely many variables (e.g., HMM)
- We can have a new operation of resampling

Particle Filtering for HMMs

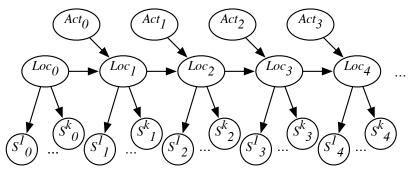
- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
 - Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
 - Resample: select each particle at random, in proportion to the weight of the particle.

Some particles may be duplicated, some may be removed. All new particles have same weight.

Transition: sample the next state for each particle according to the transition probabilities.

To answer a query about the current state, use the set of particles as data.

Example: Localization



Loc consists of (x, y, θ) – position and orientation k = 24 sonar sensors (all very noisy)

To sample from a distribution P:

• Create (ergodic and aperiodic) Markov chain with *P* as equilibrium distribution.

Let $T(S_{i+1} | S_i)$ be the transition probability.

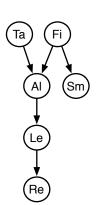
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to *P*.
- Ignore the first samples "burn-in"

- use the remaining samples.

- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"
- Gibbs sampler: sample each non-observed variable from the distribution of the variable given the current (or observed) value of the variables in its Markov blanket.

Gibbs Sampling Example: $P(ta \mid sm, re)$

. . .



Ta Fi Al Le true false false true **S**1 Select *Le*. Sample from $P(Le \mid \neg al \land re)$ true false false false **S**2 Select *Fi*. Sample from $P(Fi \mid ta \land \neg al \land sm)$ true true false false Sa Select AI. Sample from $P(AI \mid ta \land fi \land \neg le)$ true true false false S٨ Select *Le*. Sample from $P(Le \mid \neg al \land re)$ true true false true S5 Select *Ta*. Sample from $P(Ta \mid \neg al \land fi)$ s_6 true true false true