Stochastic Simulation

- Idea: probabilities \leftrightarrow samples
- Get probabilities from samples:

X	count			
x_{1}	n_{1}			
\vdots	\vdots			
x_{k}	n_{k}			
total	m	\leftrightarrow	X	probability
:---:	:---:			
x_{1}	n_{1} / m			
\vdots	\vdots			
x_{k}	n_{k} / m			

Stochastic Simulation

- Idea: probabilities \leftrightarrow samples
- Get probabilities from samples:

X	count			
x_{1}	n_{1}			
\vdots	\vdots			
x_{k}	n_{k}			
total	m	\leftrightarrow	X	probability
:---:	:---:			
x_{1}	n_{1} / m			
\vdots	\vdots			
x_{k}	n_{k} / m			

- If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution:

$$
f(x)=P(X \leq x)
$$

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x)=P(X \leq x)$.
- Select a value y uniformly in the range $[0,1]$.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x)=P(X \leq x)$.
- Select a value y uniformly in the range $[0,1]$.
- Select the x such that $f(x)=y$.

Cumulative Distribution

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$
P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}
$$

Guarantees a probably approximately correct estimate of probability.

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$
P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}
$$

Guarantees a probably approximately correct estimate of probability.
If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2 e^{-2 n \epsilon^{2}}<\delta$ for n, which gives

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$
P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}
$$

Guarantees a probably approximately correct estimate of probability.
If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2 e^{-2 n \epsilon^{2}}<\delta$ for n, which gives

$$
n>\frac{-\ln \frac{\delta}{2}}{2 \epsilon^{2}}
$$

Hoeffding's inequality

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$
P(|s-p|>\epsilon) \leq 2 e^{-2 n \epsilon^{2}}
$$

Guarantees a probably approximately correct estimate of probability.
If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2 e^{-2 n \epsilon^{2}}<\delta$ for n, which gives

$$
n>\frac{-\ln \frac{\delta}{2}}{2 \epsilon^{2}}
$$

ϵ	δ	n
0.1	0.05	185
0.01	0.05	18,445
0.1	0.01	265

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before sampling X.
- Given values for the parents of X, sample from the probability of X given its parents.

Rejection Sampling

- To estimate a posterior probability given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}:$
- Reject any sample that assigns Y_{i} to a value other than v_{i}.

Rejection Sampling

- To estimate a posterior probability given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}:$
- Reject any sample that assigns Y_{i} to a value other than v_{i}.
- The non-rejected samples are distributed according to the posterior probability:

$$
P(\alpha \mid \text { evidence }) \approx \frac{\sum_{\alpha} \text { is true in sample }{ }^{1}}{\sum_{\text {sample }} 1}
$$

where we consider only samples consistent with evidence.

Rejection Sampling Example: $P(t a \mid s m, r e)$

$$
\text { Observe } S m=\text { true, } R e=\text { true }
$$

	Ta	Fi	Al	Sm	Le	Re
s_{1}	false	true	false	true	false	false

Rejection Sampling Example: $P(t a \mid s m, r e)$

$$
\text { Observe } S m=\text { true, } R e=\text { true }
$$

	Ta	Fi	Al	Sm	Le	Re	
s_{1}	false	true	false	true	false	false	\boldsymbol{X}

Rejection Sampling Example: $P(t a \mid s m, r e)$

$$
\text { Observe } S m=\text { true, } R e=\text { true }
$$

	Ta	Fi	Al	Sm	Le	Re	
s_{1}	false	true	false	true	false	false	\mathbf{X}
s_{2}	false	true	true	true	true	true	

Rejection Sampling Example: $P(t a \mid s m, r e)$

$$
\text { Observe } S m=\text { true, } R e=\text { true }
$$

	Ta	Fi	Al	Sm	Le	Re	
s_{1}	false	true	false	true	false	false	\boldsymbol{X}
s_{2}	false	true	true	true	true	true	$\boldsymbol{\nu}$

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

	Ta	Fi	Al	Sm	Le	Re	
s_{1}	false	true	false	true	false	false	\boldsymbol{X}
s_{2}	false	true	true	true	true	true	$\boldsymbol{\nu}$
s_{3}	true	false	true	false			

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Rejection Sampling Example: $P(t a \mid s m, r e)$

Observe $S m=$ true, $R e=$ true

Doesn't work well when evidence is unlikely.

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$
P(\alpha \mid \text { evidence }) \approx \frac{\sum_{\text {sample: } \alpha} \text { is true in sample }}{\sum_{\text {sample }} \text { weight(sample) }}
$$

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$
P(\alpha \mid \text { evidence }) \approx \frac{\sum_{\text {sample: } \alpha} \text { is true in sample }}{\sum_{\text {sample }} \text { weight(sample) }}
$$

- Mix exact inference with sampling: don't sample all of the variables, but weight each sample according to P (evidence \mid sample).

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
\# H has some real domain (e.g., $\{0,1\}$)
mass $:=0 \quad \#$ mass of all samples
hmass :=0 \# weighted sum of value of H
repeat n times:
weight $:=1 \quad \#$ weight of current sample for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed

$$
\text { weight }:=\text { weight } \times P\left(X_{i}=o_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

else assign X_{i} a random sample of $P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
mass := mass + weight
hmass $:=$ hmass + weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
$\# H$ has some real domain (e.g., $\{0,1\}$)
mass :=0 \# mass of all samples
hmass :=0 \# weighted sum of value of H
repeat n times:
weight :=1 \# weight of current sample for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed

$$
\text { weight }:=\text { weight } \times P\left(X_{i}=o_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

else assign X_{i} a random sample of $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
mass $:=$ mass + weight
hmass $:=$ hmass + weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
$\# H$ has some real domain (e.g., $\{0,1\}$)
mass $:=0$
hmass :=0
\# mass of all samples
\# weighted sum of value of H
repeat n times:
weight $:=1 \quad \#$ weight of current sample for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed

$$
\text { weight }:=\text { weight } \times P\left(X_{i}=o_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

else assign X_{i} a random sample of $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
mass := mass + weight
hmass $:=$ hmass + weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
$\# H$ has some real domain (e.g., $\{0,1\}$)
mass $:=0$
hmass :=0
\# mass of all samples
\# weighted sum of value of H
repeat n times:
weight $:=1 \quad \#$ weight of current sample for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed

$$
\text { weight }:=\text { weight } \times P\left(X_{i}=o_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

else assign X_{i} a random sample of $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
mass $:=$ mass + weight
hmass $:=h m a s s+$ weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling (Likelihood Weighting)

procedure likelihood_weighting(Bn, e, H, n):
\# Approximate $P(H \mid e)$ in belief network $B n$ using n samples.
$\# H$ has some real domain (e.g., $\{0,1\}$)
mass $:=0 \quad \#$ mass of all samples
hmass :=0 \# weighted sum of value of H
repeat n times:
weight $:=1 \quad \#$ weight of current sample for each variable X_{i} in order:
if $X_{i}=o_{i}$ is observed
weight $:=$ weight $\times P\left(X_{i}=o_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
else assign X_{i} a random sample of $P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
mass := mass + weight
hmass $:=$ hmass + weight $*$ (value of H in current assignment)
return hmass/mass

Importance Sampling Example: $P(t a \mid s m, r e)$

Importance Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le	Weight
s_{1}	true	false	true	false	0.01×0.01
s_{2}	false	true	false	false	
s_{3}	false	true	true	true	
s_{4}	true	true	true	true	
\ldots					
s_{1000}	false	false	true	true	
$P(s m \mid$ fi $)=0.9$					
$P(s m \mid \neg f i)=0.01$					
$P(r e \mid l e)=0.75$					
$P(r e \mid \neg l e)=0.01$					

Importance Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le	Weight
s_{1}	true	false	true	false	0.01×0.01

$s_{2} \quad$ false true false false 0.9×0.01
s_{3} false true true true 0.9×0.75
s_{4} true true true true 0.9×0.75
s_{1000} false false true true 0.01×0.75

$$
\begin{aligned}
& P(s m \mid f i)=0.9 \\
& P(s m \mid \neg f i)=0.01 \\
& P(r e \mid l e)=0.75 \\
& P(r e \mid \neg l e)=0.01
\end{aligned}
$$

Importance Sampling Example: $P(l e \mid s m, t a, \neg r e)$

$$
\begin{aligned}
& P(t a)=0.02 \\
& P(f i)=0.01 \\
& P(a l \mid f i \wedge t a)=0.5 \\
& P(a l \mid f i \wedge \neg t a)=0.99 \\
& P(a l \mid \neg f i \wedge t a)=0.85 \\
& P(a l \mid \neg f i \wedge \neg t a)=0.0001 \\
& P(s m \mid f i)=0.9 \\
& P(s m \mid \neg f i)=0.01 \\
& P(l e \mid a l)=0.88 \\
& P(l e \mid \neg a l)=0.001 \\
& P(r e \mid l e)=0.75 \\
& P(r e \mid \neg l e)=0.01
\end{aligned}
$$

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\mathbb{E}_{P}(f)=\sum_{w} f(w) * P(w)
$$

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) \\
& \approx \frac{1}{n} \sum_{s} f(s)
\end{aligned}
$$

s is sampled with probability P. There are n samples.
(Expectation of variable with domain $\{0,1\}$ is its probability.)

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) \\
& \approx \frac{1}{n} \sum_{s} f(s)
\end{aligned}
$$

s is sampled with probability P. There are n samples.
(Expectation of variable with domain $\{0,1\}$ is its probability.)

$$
\mathbb{E}_{P}(f)=\sum_{w} f(w) * P(w) / Q(w) * Q(w)
$$

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) \\
& \approx \frac{1}{n} \sum_{s} f(s)
\end{aligned}
$$

s is sampled with probability P. There are n samples.
(Expectation of variable with domain $\{0,1\}$ is its probability.)

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) / Q(w) * Q(w) \\
& \approx \frac{1}{n} \sum_{s} f(s) * P(s) / Q(s)
\end{aligned}
$$

s is selected according the distribution Q.

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) \\
& \approx \frac{1}{n} \sum_{s} f(s)
\end{aligned}
$$

s is sampled with probability P. There are n samples.
(Expectation of variable with domain $\{0,1\}$ is its probability.)

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) / Q(w) * Q(w) \\
& \approx \frac{1}{n} \sum_{s} f(s) * P(s) / Q(s)
\end{aligned}
$$

s is selected according the distribution Q.
The distribution Q is called a proposal distribution.

Computing Expectations \& Proposal Distributions

Expected value of f with respect to distribution P :

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) \\
& \approx \frac{1}{n} \sum_{s} f(s)
\end{aligned}
$$

s is sampled with probability P. There are n samples.
(Expectation of variable with domain $\{0,1\}$ is its probability.)

$$
\begin{aligned}
\mathbb{E}_{P}(f) & =\sum_{w} f(w) * P(w) / Q(w) * Q(w) \\
& \approx \frac{1}{n} \sum_{s} f(s) * P(s) / Q(s)
\end{aligned}
$$

s is selected according the distribution Q.
The distribution Q is called a proposal distribution.
$P(c)>0$ then $Q(c)>0$.
Try to make Q so the weights end up far from zero.

Particle Filtering

Importance sampling can be seen as:
for each particle: for each variable: sample / absorb evidence / update query
where particle is one of the samples.

Particle Filtering

Importance sampling can be seen as:
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
for each variable: for each particle: sample / absorb evidence / update query

Particle Filtering

Importance sampling can be seen as:
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
for each variable: for each particle: sample / absorb evidence / update query

Why?

Particle Filtering

Importance sampling can be seen as:
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
for each variable: for each particle: sample / absorb evidence / update query
Why?

- It works with infinitely many variables (e.g., HMM)

Particle Filtering

Importance sampling can be seen as:
for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
for each variable: for each particle:
sample / absorb evidence / update query
Why?

- It works with infinitely many variables (e.g., HMM)
- We can have a new operation of resampling

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
- Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
- Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
- Resample: select each particle at random, in proportion to the weight of the particle.
Some particles may be duplicated, some may be removed. All new particles have same weight.

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
- Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
- Resample: select each particle at random, in proportion to the weight of the particle.
Some particles may be duplicated, some may be removed. All new particles have same weight.
- Transition: sample the next state for each particle according to the transition probabilities.

Particle Filtering for HMMs

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
- Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
- Resample: select each particle at random, in proportion to the weight of the particle.
Some particles may be duplicated, some may be removed. All new particles have same weight.
- Transition: sample the next state for each particle according to the transition probabilities.
To answer a query about the current state, use the set of particles as data.

Example: Localization

Loc consists of (x, y, θ) - position and orientation $k=24$ sonar sensors (all very noisy)

Markov Chain Monte Carlo

To sample from a distribution P :

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
Let $T\left(S_{i+1} \mid S_{i}\right)$ be the transition probability.
- Given state s, sample state s^{\prime} from $T(S \mid s)$

Markov Chain Monte Carlo

To sample from a distribution P :

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
Let $T\left(S_{i+1} \mid S_{i}\right)$ be the transition probability.
- Given state s, sample state s^{\prime} from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.

Markov Chain Monte Carlo

To sample from a distribution P :

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
Let $T\left(S_{i+1} \mid S_{i}\right)$ be the transition probability.
- Given state s, sample state s^{\prime} from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
- use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"

Markov Chain Monte Carlo

To sample from a distribution P :

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
Let $T\left(S_{i+1} \mid S_{i}\right)$ be the transition probability.
- Given state s, sample state s^{\prime} from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
- use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"
- Gibbs sampler: sample each non-observed variable from the distribution of the variable given the current (or observed) value of the variables in its Markov blanket.

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta	Fi	Al	Le
s_{1} true	false	false	true
Select $L e$.			

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta	Fi	Al	Le
$s_{1} \quad$ true	false false true		
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$			

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta $\mathrm{Fi} \quad \mathrm{Al}$ Le
s_{1} true false false true
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false

Gibbs Sampling Example: $P(t a \mid s m, r e)$

| Ta | Fi | Al Le |
| :--- | :--- | :--- | :--- |
| s_{1} true false false true | | |
| Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$ | | |
| s_{2} true false false false | | |
| Select Fi. | | |

Gibbs Sampling Example: $P(t a \mid s m, r e)$

$\mathrm{Ta} \mathrm{Fi} \quad \mathrm{Al}$ Le
s_{1} true false false true
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi . Sample from $P(\mathrm{Fi} \mid \operatorname{ta} \wedge \neg a l \wedge s m)$

Gibbs Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le
s_{1}	true	false	false	true

Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false

Gibbs Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le
s_{1}	true	false	false	true

Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$ s_{3} true true false false Select AI.

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select Le. Sample from $P(\mathrm{Le} \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(\mathrm{Fi} \mid \operatorname{ta} \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select AI. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A I$. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$
$s_{4} \quad$ true true false false

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select $F i$. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A I$. Sample from $P(A I \mid \operatorname{ta} \wedge f i \wedge \neg l e)$
s_{4} true true false false
Select $L e$.

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A I$. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$
s_{4} true true false false
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A l$. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$
s_{4} true true false false
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{5} true true false true

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi . Sample from $P(\mathrm{Fi} \mid$ ta $\wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A I$. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$
s_{4} true true false false
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{5} true true false true
Select $T a$.

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta Fi Al Le
s_{1} true false false true
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{2} true false false false
Select Fi . Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false
Select $A l$. Sample from $P(A I \mid t a \wedge f i \wedge \neg l e)$
s_{4} true true false false
Select $L e$. Sample from $P(L e \mid \neg a l \wedge r e)$
s_{5} true true false true
Select $T a$. Sample from $P(T a \mid \neg a l \wedge f i)$

Gibbs Sampling Example: $P(t a \mid s m, r e)$

Ta	Fi	Al	Le
$s_{1} \quad$ true	false false true		
Select $L e$.	Sample from $P(L e \mid \neg a l \wedge r e)$		

$$
s_{2} \text { true false false false }
$$

Select Fi. Sample from $P(F i \mid t a \wedge \neg a l \wedge s m)$
s_{3} true true false false Select $A l$. Sample from $P(A I \mid t a \wedge f i \wedge \neg / e)$
s_{4} true true false false
Select Le. Sample from $P(L e \mid \neg a l \wedge r e)$
S_{5} true true false true
Select Ta. Sample from $P(T a \mid \neg a l \wedge f i)$
s_{6} true true false true
...

