Stochastic Simulation

- Idea: probabilities ↔ samples
- Get probabilities from samples:

X	count	
<i>x</i> ₁	n ₁	
•	:	
x_k	n_k	
total	m	

 \leftrightarrow

X	probability
<i>x</i> ₁	n_1/m
:	:
Xk	n_k/m

Stochastic Simulation

- Idea: probabilities ↔ samples
- Get probabilities from samples:

X	count		X	probability
<i>x</i> ₁	n ₁		<i>X</i> 1	n_1/m
:	:	\leftrightarrow	:	:
x_k	n _k		Xk	n_k/m
total	m		ΛK	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

For a variable X with a discrete domain or a (one-dimensional) real domain:

• Totally order the values of the domain of *X*.

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution:

$$f(x) = P(X \le x).$$

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of *X*.
- Generate the cumulative probability distribution: $f(x) = P(X \le x)$.
- Select a value y uniformly in the range [0, 1].

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x) = P(X \le x)$.
- Select a value y uniformly in the range [0, 1].
- Select the x such that f(x) = y.

Cumulative Distribution

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

$$n>\frac{-\ln\frac{\delta}{2}}{2\epsilon^2}.$$

Theorem (Hoeffding): Suppose p is the true probability, and s is the sample average from n independent samples; then

$$P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}.$$

Guarantees a probably approximately correct estimate of probability.

If you are willing to have an error greater than ϵ in less than δ of the cases, solve $2e^{-2n\epsilon^2}<\delta$ for n, which gives

$$n>\frac{-\ln\frac{\delta}{2}}{2\epsilon^2}.$$

ϵ	δ	n
0.1	0.05	185
0.01	0.05	18,445
0.1	0.01	265

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before sampling X.
- Given values for the parents of X, sample from the probability of X given its parents.

Rejection Sampling

- To estimate a posterior probability given evidence $Y_1 = v_1 \wedge ... \wedge Y_j = v_j$:
- Reject any sample that assigns Y_i to a value other than v_i .

Rejection Sampling

- To estimate a posterior probability given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:
- Reject any sample that assigns Y_i to a value other than v_i .
- The non-rejected samples are distributed according to the posterior probability:

$$P(\alpha \mid \textit{evidence}) pprox rac{\sum_{lpha} ext{ is true in sample } 1}{\sum_{\textit{sample}} 1}$$

where we consider only samples consistent with evidence.

	Ta	Fi	ΑI	Sm	Le	Re	
	false	true	false	true	false	false	

Ta	Fi	ΑI	Sm	Le	Re		
 false	true	false	true	false	false	X	

	Ta	Fi	ΑI	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	

	Ta	Fi	Al	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	~

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	×
<i>s</i> ₂	false	true	true	true	true	true	~
<i>s</i> ₃	true	false	true	false			

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	~
<i>s</i> ₃	true	false	true	false	_		X

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	~
<i>s</i> ₃	true	false	true	false			X
<i>S</i> ₄	true	true	true	true	true	true	

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	~
<i>s</i> ₃	true	false	true	false	_	_	X
<i>S</i> ₄	true	true	true	true	true	true	/

	Ta	Fi	ΑI	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	~
<i>s</i> ₃	true	false	true	false			×
<i>S</i> ₄	true	true	true	true	true	true	~
<i>s</i> ₁₀₀₀	false	false	false	false			

Observe Sm = true, Re = true

(Ta) (Fi)
Al	Sm
Le)
Re)

	Ta	Fi	Αl	Sm	Le	Re	
s_1	false	true	false	true	false	false	X
<i>s</i> ₂	false	true	true	true	true	true	/
s 3	true	false	true	false			X
<i>S</i> ₄	true	true	true	true	true	true	~
 s ₁₀₀₀	false	false	false	false		_	×

$$P(sm) = 0.02$$

 $P(re \mid sm) = 0.32$

There are 1000 samples.

How many are rejected?

How many are used?

Observe Sm = true, Re = true

Doesn't work well when evidence is unlikely.

7/18

Importance Sampling

• Samples have weights: a real number associated with each sample that takes the evidence into account.

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$P(\alpha \mid evidence) pprox rac{\displaystyle \sum_{sample: lpha \text{ is true in sample}} weight(sample)}{\displaystyle \sum_{sample} weight(sample)}$$

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$P(\alpha \mid evidence) pprox rac{\displaystyle \sum_{sample: lpha \text{ is true in sample}} weight(sample)}{\displaystyle \sum_{sample} weight(sample)}$$

 Mix exact inference with sampling: don't sample all of the variables, but weight each sample according to P(evidence | sample).


```
procedure likelihood\_weighting(Bn, e, H, n):
   # Approximate P(H \mid e) in belief network Bn using n samples.
   # H has some real domain (e.g., \{0,1\})
   mass := 0
                        # mass of all samples
   hmass := 0
                          \# weighted sum of value of H
   repeat n times:
        weight := 1
                                # weight of current sample
        for each variable X_i in order:
             if X_i = o_i is observed
                  weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        mass := mass + weight
        hmass := hmass + weight * (value of H in current assignment)
   return hmass/mass
```

```
procedure likelihood\_weighting(Bn, e, H, n):
   # Approximate P(H \mid e) in belief network Bn using n samples.
   # H has some real domain (e.g., \{0,1\})
                        # mass of all samples
   mass := 0
   hmass := 0
                          \# weighted sum of value of H
   repeat n times:
        weight := 1
                                # weight of current sample
        for each variable X_i in order:
             if X_i = o_i is observed
                  weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        mass := mass + weight
        hmass := hmass + weight * (value of H in current assignment)
   return hmass/mass
```

```
procedure likelihood\_weighting(Bn, e, H, n):
   # Approximate P(H \mid e) in belief network Bn using n samples.
   # H has some real domain (e.g., \{0,1\})
                        # mass of all samples
   mass := 0
   hmass := 0
                          \# weighted sum of value of H
   repeat n times:
        weight := 1
                                # weight of current sample
        for each variable X_i in order:
             if X_i = o_i is observed
                  weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        mass := mass + weight
        hmass := hmass + weight * (value of H in current assignment)
   return hmass/mass
```

```
procedure likelihood\_weighting(Bn, e, H, n):
   # Approximate P(H \mid e) in belief network Bn using n samples.
   # H has some real domain (e.g., \{0,1\})
                        # mass of all samples
   mass := 0
   hmass := 0
                          \# weighted sum of value of H
   repeat n times:
        weight := 1
                                # weight of current sample
        for each variable X_i in order:
             if X_i = o_i is observed
                  weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        mass := mass + weight
        hmass := hmass + weight * (value of H in current assignment)
   return hmass/mass
```

```
procedure likelihood\_weighting(Bn, e, H, n):
   # Approximate P(H \mid e) in belief network Bn using n samples.
   # H has some real domain (e.g., \{0,1\})
                        # mass of all samples
   mass := 0
   hmass := 0
                          \# weighted sum of value of H
   repeat n times:
        weight := 1
                                # weight of current sample
        for each variable X_i in order:
             if X_i = o_i is observed
                  weight := weight \times P(X_i = o_i \mid parents(X_i))
             else assign X_i a random sample of P(X_i \mid parents(X_i))
        mass := mass + weight
        hmass := hmass + weight * (value of H in current assignment)
   return hmass/mass
```

Importance Sampling Example: $P(ta \mid sm, re)$

	Ta	Fi	Al	Le	Weight		
s_1	true	false	true	false			
<i>s</i> ₂	false	true	false	false			
<i>s</i> ₃	false	true	true	true			
<i>S</i> ₄	true	true	true	true			
 s ₁₀₀₀	false	false	true	true			
$P(sm \mid fi) = 0.9$ $P(sm \mid \neg fi) = 0.01$ $P(re \mid le) = 0.75$ $P(re \mid \neg le) = 0.01$							

Importance Sampling Example: $P(ta \mid sm, re)$

	Ta	Fi	ΑI	Le	Weight			
s_1	true	false	true	false	0.01×0.01			
<i>s</i> ₂	false	true	false	false				
s 3	false	true	true	true				
<i>S</i> ₄	true	true	true	true				
<i>s</i> ₁₀₀₀	false	false	true	true				
$P(sm \mid fi) = 0.9$ $P(sm \mid \neg fi) = 0.01$ $P(re \mid le) = 0.75$ $P(re \mid \neg le) = 0.01$								

Importance Sampling Example: $P(ta \mid sm, re)$

	Ta	Fi	Αl	Le	Weight		
s_1	true	false	true	false	0.01×0.01		
<i>s</i> ₂	false	true	false	false	0.9×0.01		
<i>s</i> ₃	false	true	true	true	0.9×0.75		
<i>S</i> ₄	true	true	true	true	0.9×0.75		
 s ₁₀₀₀	false	false	true	true	0.01×0.75		
$P(sm \mid fi) = 0.9$ $P(sm \mid \neg fi) = 0.01$							

$$P(sm | fi) = 0.9$$

 $P(sm | \neg fi) = 0.01$
 $P(re | le) = 0.75$
 $P(re | \neg le) = 0.01$

Importance Sampling Example: $P(le \mid sm, ta, \neg re)$

$$P(ta) = 0.02$$

 $P(fi) = 0.01$
 $P(al | fi \land ta) = 0.5$
 $P(al | fi \land \neg ta) = 0.99$
 $P(al | \neg fi \land ta) = 0.85$
 $P(al | \neg fi \land \neg ta) = 0.0001$
 $P(sm | fi) = 0.9$
 $P(sm | \neg fi) = 0.01$
 $P(le | al) = 0.88$
 $P(le | \neg al) = 0.001$
 $P(re | le) = 0.75$
 $P(re | \neg le) = 0.01$

Expected value of f with respect to distribution P:

$$\mathbb{E}_P(f) = \sum_w f(w) * P(w)$$

Expected value of f with respect to distribution P:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

Expected value of f with respect to distribution P:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

$$\mathbb{E}_P(f) = \sum_w f(w) * P(w)/Q(w) * Q(w)$$

Expected value of *f* with respect to distribution *P*:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)/Q(w) * Q(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s) * P(s)/Q(s)$$

s is selected according the distribution Q.

Expected value of *f* with respect to distribution *P*:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)/Q(w) * Q(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s) * P(s)/Q(s)$$

s is selected according the distribution Q.

The distribution Q is called a proposal distribution.

Expected value of f with respect to distribution P:

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s)$$

s is sampled with probability P. There are n samples. (Expectation of variable with domain $\{0,1\}$ is its probability.)

$$\mathbb{E}_{P}(f) = \sum_{w} f(w) * P(w)/Q(w) * Q(w)$$

$$\approx \frac{1}{n} \sum_{s} f(s) * P(s)/Q(s)$$

s is selected according the distribution Q.

The distribution Q is called a proposal distribution.

$$P(c) > 0$$
 then $Q(c) > 0$.

Try to make Q so the weights end up far from zero.

Importance sampling can be seen as:

for each particle:
for each variable:
sample / absorb evidence / update query
where particle is one of the samples.


```
Importance sampling can be seen as:

for each particle:
    for each variable:
        sample / absorb evidence / update query

where particle is one of the samples.

Instead we could do:

for each variable:
    for each particle:
        sample / absorb evidence / update query
```

```
Importance sampling can be seen as:
   for each particle:
        for each variable:
            sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
   for each variable:
        for each particle:
            sample / absorb evidence / update query
Why?
```

```
Importance sampling can be seen as:
   for each particle:
        for each variable.
             sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
   for each variable:
        for each particle:
             sample / absorb evidence / update query
Why?

    It works with infinitely many variables (e.g., HMM)
```

```
Importance sampling can be seen as:
   for each particle:
        for each variable.
            sample / absorb evidence / update query
where particle is one of the samples.
Instead we could do:
   for each variable:
        for each particle:
            sample / absorb evidence / update query
Why?
```

- It works with infinitely many variables (e.g., HMM)
- We can have a new operation of resampling

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
 - Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
 - Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
 - Resample: select each particle at random, in proportion to the weight of the particle.
 - Some particles may be duplicated, some may be removed. All new particles have same weight.

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):

new particles have same weight.

- Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
- Resample: select each particle at random, in proportion to the weight of the particle.
 Some particles may be duplicated, some may be removed. All
- ► Transition: sample the next state for each particle according to the transition probabilities.

- Start with random chosen particles (say 1000)
- Sample initial states in proportion to their probability.
- Repeat (as each observation arrives):
 - Absorb evidence: weight each particle by the probability of the evidence observation given the state of the particle.
 - Resample: select each particle at random, in proportion to the weight of the particle.
 Some particles may be duplicated, some may be removed. All new particles have same weight.
 - ► Transition: sample the next state for each particle according to the transition probabilities.

To answer a query about the current state, use the set of particles as data.

Example: Localization

Loc consists of (x, y, θ) – position and orientation k = 24 sonar sensors (all very noisy)

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
 - Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution.
- Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution. Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
 use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"

- Create (ergodic and aperiodic) Markov chain with P as equilibrium distribution. Let $T(S_{i+1} \mid S_i)$ be the transition probability.
- Given state s, sample state s' from $T(S \mid s)$
- After a while, the states sampled will be distributed according to P.
- Ignore the first samples "burn-in"
 use the remaining samples.
- Samples are not independent of each other "autocorrelation". Sometimes use subset (e.g., 1/1000) of them "thinning"
- Gibbs sampler: sample each non-observed variable from the distribution of the variable given the current (or observed) value of the variables in its Markov blanket.

Ta Fi Al Le s_1 true false false true Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi.

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false

Select Al.

Ta Fi Al Le s_1 true false false true

Select Le. Sample from $P(Le \mid \neg al \land re)$ s_2 true false false false

Select Fi. Sample from $P(Fi \mid ta \land \neg al \land sm)$ s_3 true true false false

Select Al. Sample from $P(Al \mid ta \land fi \land \neg le)$

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \wedge re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi.	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	${\sf Sample}$	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Selec	t Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Selec	t Fi.	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Selec	t <i>AI</i> .	${\sf Sample}$	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Selec	t Le.			

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi.	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \wedge re)$
				,

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi. S	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from	$P(Al \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>S</i> 5	true	true	false	true

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ect <i>Le</i> .	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ect Fi.	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ect AI.	Sample	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Sele	ect <i>Le</i> .	Sample	from	$P(Le \mid \neg al \land re)$
<i>S</i> 5	true	true	false	true
Sele	ct <i>Ta</i> .			

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi. S	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \land re)$
<i>S</i> 5	true	true	false	true
Sele	ct <i>Ta</i> .	Sample	from	$P(Ta \mid \neg al \wedge fi)$

	Ta	Fi	ΑI	Le
<i>s</i> ₁	true	false	false	true
Sele	ct <i>Le</i> .	Sample	from	$P(Le \mid \neg al \land re)$
<i>s</i> ₂	true	false	false	false
Sele	ct Fi. S	Sample	from	$P(Fi \mid ta \land \neg al \land sm)$
<i>s</i> ₃	true	true	false	false
Sele	ct AI.	Sample	from	$P(AI \mid ta \land fi \land \neg le)$
<i>S</i> ₄	true	true	false	false
Sele	ct Le.	Sample	from	$P(Le \mid \neg al \wedge re)$
<i>S</i> 5	true	true	false	true
Sele	ct <i>Ta</i> .	Sample	from	$P(Ta \mid \neg al \wedge fi)$
<i>s</i> ₆	true	true	false	true