
Clicker Question

The belief network:

W

X Y Z

requires which probabilities to be specified:

A P(W ,X ,Y ,Z )

B P(W ),P(X | W ),P(Y | X ),P(Z | Y )

C P(W ,X ),P(Y ,X ),P(Y ,Z )

D P(W | X ),P(W | Y ),P(W | Z )
E P(W ), P(X | W ), P(Y | W ), P(Z | W )
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Clicker Question

The belief network:

W X Y Z

is represented using which factors in variable elimination:

A f (W ,X ,Y ,Z )

B f0(W ), f1(W ,X ), f2(X ,Y ), f3(Y ,Z )

C f1(W ,X ), f2(X ,Y ), f3(Y ,Z )

D f1(W ,X ), f2(X ,Y ), f3(Y ,Z ), f4(Z )

E f1(W ,X ,Y ), f2(X ,Y ,Z )
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Clicker Question

S0 S1 S2 S3 S4

Which of the following is not true

A S3 is independent of S1 given S2

B S4 is independent of S0 given S3

C S4 is independent of S0 given no evidence

D S0 is independent of S4 given S3
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Clicker Question

For the belief network:

S0 S1 S2 S3 S4

For the query P(S2), what variables can be pruned before doing
inference:

A no variables can be pruned

B S3 and S4

C S0 and S1

D S0

E S0, S3 and S4
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Markov chains

A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

What probabilities need to be specified?

P(S0) specifies initial conditions

P(Si+1 | Si ) specifies the dynamics

What independence assumptions are made?

P(Si+1 | S0, . . . ,Si ) = P(Si+1 | Si ).
Often St represents the state at time t.
The state encodes all of the information about the past that
can affect the future.

“The future is independent of the past given the state.”
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Stationary Markov chain

A stationary Markov chain is when for all i > 0, i ′ > 0,
P(Si+1 | Si ) = P(Si ′+1 | Si ′).

We specify P(S0) and P(Si+1 | Si ). Same parameters for each
i .
▶ Simple model, easy to specify
▶ Often the natural model
▶ The network can extend indefinitely

A stationary distribution is a distribution over states such that
for ever state s, P(Si+1=s) = P(Si=s).

Under reasonable assumptions, P(Sk) will approach the
stationary distribution as k → ∞.
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Pagerank

Consider the Markov chain:

Domain of Si is the set of all web pages

P(S0) is uniform; P(S0 = pj) = 1/N

P(Si+1 = pj | Si = pk)

= (1− d)/N + d ∗



1/nk if pk links to pj
1/N if pk has no links
0 otherwise

where there are N web pages

and nk links from page pk

d ≈ 0.85 is the probability someone keeps surfing web

This Markov chain converges to a stationary distribution over
web pages (original P(Si ) for i = 52 for 24 million pages and
322 million links):
Pagerank - basis for Google’s initial search engine
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Simple Language Models: set-of-words

Sentence: w1,w2,w3, . . . .
Set-of-words model:

“aardvark” “zzz”“a” ...

Each variable is Boolean: true when word is in the text and
false otherwise.

What probabilities are provided?
▶ P(”a”), P(”aardvark”), . . . , P(”zzz”)

How do we condition on the question “how can I phone my
phone”?
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Naive Bayes Classifier: User’s request for help

H

"able" "absent" "add" "zoom". . .

Which of the following probabilities are not required?

A P(hi ) for each help page hi .

B P(wj | hi ) for each word wj and help page hi .

C P(wj) for each word wj .

D All of the above are required

E None of the above are required
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Naive Bayes Classifier: User’s request for help

H

"able" "absent" "add" "zoom". . .

What is the independence assumption embedded in this model?

A The help pages are independent of each other

B The help pages are independent of the words.

C The words are independent of each other given the help page.

D The words are independent of each other given no information

E There are no independencies
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Naive Bayes Classifier: User’s request for help

H

"able" "absent" "add" "zoom". . .

H is the help page the user is interested in.

What probabilities are required?

P(hi ) for each help page hi . The user is interested in one best
web page, so

∑
i P(hi ) = 1.

P(wj | hi ) for each word wj given page hi . There can be
multiple words used in a query.

Given a help query: condition on the query: words in the
query are true and the other are false.
Display the most likely help page.
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Simple Language Models: bag-of-words

Sentence: w1,w2,w3, . . . ,wn.
Bag-of-words or unigram:

W2 ...W3 WnW1

Domain of each variable is the set of all words.

What probabilities are provided?
▶ P(wi ) is a distribution over words for each position

How do we condition on the question “how can I phone my
phone”?
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Simple Language Models: bigram

Sentence: w1,w2,w3, . . . ,wn.
bigram:

W2 ...W3 WnW1

Domain of each variable is the set of all words.

What probabilities are provided?
▶ P(wi | wi−1) is a distribution over words for each position

given the previous word

How do we condition on the question “how can I phone my
phone”?
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Simple Language Models: trigram

Sentence: w1,w2,w3, . . . ,wn.
trigram:

W2 ...W3 WnW1 W4

Domain of each variable is the set of all words.

What probabilities are provided?

P(wi | wi−1,wi−2)

N-gram

P(wi | wi−1, . . .wi−n+1) is a distribution over words given the
previous n − 1 words

ChatGPT (GPT-3) is a 2048-gram, with the conditional
probabilities represented using neural-networks (transformers)
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probabilities represented using neural-networks (transformers)
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Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer
(https://books.google.com/ngrams)
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Topic Model

tools food topics

"nut" "tuna""bolt" words

fish

“shark”“salmon”

finance
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Google’s rephil

900,000 topics

"Aaron's 
beard" "zzz""aardvark" 12,000,000 words...

350,000,000 links

...
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Predictive Typing and Error Correction

W2 ...W1

L11 Lk1L21 ... L12 Lk2L22 ...

W3

L13 Lk3L23 ...

domain(Wi ) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
domain(Lji ) = {”a”, ”b”, ”c”, . . . , ”z”, ”1”, ”2”, . . . }
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Beyond N-grams

A person with a big hairy cat drank the cold milk.

Who or what drank the milk?

s

np vp

pp

np

npa person

with

a big hairy cat

drank

the cold milk

Explicitly build a parse tree

Use a generative model (e.g., a neural network with
transformers) to represent P(word | context) for a large
context (e.g. 2048 tokens for ChatGPT/GPT-3).
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Clicker Question

For the belief network:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

What probabilities need to be specified (for each i ≥ 0, i < 5)?

A P(S0), P(Si+1 | Si ), P(Oi | Si )
B P(S0 | O0), P(Si+1 | Si ,Oi+1), P(Oi )

C P(S0), P(Si+1 | S0, . . . ,Si ), P(Oi | S0, . . . ,Si )
D P(S0 | S1,O0), P(Si+1 | Si ,Si+2,Oi+1), P(Oi | Si )
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Hidden Markov Model

A Hidden Markov Model (HMM) is a belief network:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

The probabilities that need to be specified:

P(S0) specifies initial conditions

P(Si+1 | Si ) specifies the dynamics

P(Oi | Si ) specifies the sensor model
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Filtering

Filtering:

P(Si | o0, . . . , oi )

What is the current belief state based on the observation history?

Observe O0, query S0. P(S0 | o0)
then observe O1, query S1. P(S1 | o0, o1)
then observe O2, query S2. P(S2 | o0, o1, o2)
. . .

P(Si | o0, . . . , oi ) ∝ P(oi | Sio0, . . . , oi−1)P(Si | o0, . . . , oi−1)

= P(oi | Si )
∑
Si−1

P(Si | Si−1)P(si−1 | o0, . . . , oi−1)
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Example: localization

Suppose a robot wants to determine its location based on its
actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3
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Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine
where it is.

See probLocalization.py in AIPython.org
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Example Sensor Model

P(Observe Door | At Door) = 0.8

P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(loct+1 = L | actiont = goRight ∧ loct = L) = 0.1

P(loct+1 = L+ 1 | actiont = goRight ∧ loct = L) = 0.8

P(loct+1 = L+ 2 | actiont = goRight ∧ loct = L) = 0.074

P(loct+1 = L′ | actiont = goRight ∧ loct = L) = 0.002 for any
other location L′.
▶ All location arithmetic is modulo 16.
▶ The action goLeft works the same but to the left.
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Combining sensor information

Example: we can combine information from a light sensor and
the door sensor Sensor Fusion

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

St robot location at time t
Dt door sensor value at time t
Lt light sensor value at time t
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Dynamic Belief Networks

State is factored into features.

Ft as the random variable that represented the value of
variable F at time t

The set of features is the same at each time.

For any time t > 0, the parents of variable Ft are variables at
time t or time t − 1, such that the graph for any time is
acyclic. t = 0 is a special case.

stationary model: conditional probability distribution of how
each variable depends on its parents is the same for every time
t > 0.
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Two-stage Dynamic Belief Networks

Weather

Transportation 
costs

Tree 
pests

Cost 
pulp

Cost
paper

Weather

Transportation 
costs

Tree 
pests

Cost 
pulp

Cost
paper

time=0 time=1
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Expanded Dynamic Belief Networks

Weather0

Transportation 
costs0

Tree 
pests0

Cost 
pulp0

Cost
paper0

Weather1

Transportation 
costs1

Tree 
pests1

Cost 
pulp1

Cost
paper1

Weather2

Transportation 
costs2

Tree 
pests2

Cost 
pulp2

Cost
paper2

Weather3

Transportation 
costs3

Tree 
pests3

Cost 
pulp3

Cost
paper3
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Time Granularity

What happens when the time granularity changes from daily
to hourly?

What happens when the time granularity changes from
event-based (time advances when an event happens) to
hourly?

A continuous time dynamic belief network contains:
▶ a distribution of how long the variable is expected to keep its

value
▶ what value it will transition to when its value changes.

This is enough information to compute the transition for any
discretization.
If time step is small enough, ignoring multiple value
transitions in each time step will result only in small errors.
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