- Variable elimination is the dynamic programming variant of recursive conditioning.
- Give a factorization, such as

$$P(D) = \sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A)P(B \mid A)$$

it does the innermost sums first, constructing representations of the intermediate factors:

•
$$\sum_{A} P(A)P(B \mid A)$$
 is a factor on B; call it $f_1(B)$.

•
$$\sum_{B} P(C \mid B) f_1(B)$$
 is a factor on C.

• Lecture covers:

- Factors and factor arithmetic
- Variable elimination algorithm

- A factor is a representation of a function from a tuple of random variables into a number.
- We write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- You can assign some or all of the variables of a factor:
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in domain(X_1)$, is a factor on X_2, \dots, X_j .
 - $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, \ldots, X_j)_{X_1 = v_1}$, etc.

$$r(X,Y,Z) : \begin{bmatrix} X & Y & Z & \text{val} \\ t & t & t & 0.1 \\ t & t & f & 0.9 \\ t & f & t & 0.2 \\ t & f & f & 0.8 \\ f & t & t & 0.4 \\ f & t & f & 0.3 \\ f & f & f & 0.7 \end{bmatrix} r(X=t,Y,Z) : \begin{bmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{bmatrix}$$

< □

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	С	val
	t	t	0.3
f ₂ :	t	f	0.7
	f	t	0.6
	f	f	0.4

	A	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, ..., X_j)$$

= $f(X_1 = v_1, ..., X_j) + \dots + f(X_1 = v_k, ..., X_j)$

С В val Α 0.03 t t t t t f t f t t f f f t t f t t f t f f t t f f t 0.07 0.54 f3: 0.36 0.06 0.14 0.48 f f f 0.32

	A	С	val
	t	t	0.57
$\sum_{B} f_3$:	t	f	0.43
_	f	t	0.54
	f	f	0.46

7/16

• To compute the posterior probability of query *Q* given evidence *E* = *e*:

$$P(Q \mid E = e)$$

$$= \frac{P(Q, E = e)}{P(E = e)}$$

$$= \frac{P(Q, E = e)}{\sum_{Q} P(Q, E = e)}$$

- So the computation reduces to the probability of P(Q, E = e)
- then normalize at the end.

Probability of a conjunction

- The variables of the belief network are X_1, \ldots, X_n .
- The evidence is $Y_1 = v_1, \ldots, Y_j = v_j$
- To compute $P(Q, Y_1 = v_1, ..., Y_j = v_j)$: we add the other variables, $Z_1, ..., Z_k = \{X_1, ..., X_n\} - \{Q\} - \{Y_1, ..., Y_j\}$. and sum them out.
- We order the Z_i into an elimination ordering.

$$P(Q, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))_{Y_1 = v_1, ..., Y_j = v_j}$$

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z_1 .

To compute $P(Q \mid Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor f(Q) by $\sum_{Q} f(Q)$.

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - those that don't contain Z_j, say f₁,..., f_i,
 - those that contain Z_j , say f_{i+1}, \ldots, f_k

Then:

$$\sum_{Z_j} f_1 * \cdots * f_k = f_1 * \cdots * f_i * \left(\sum_{Z_j} f_{i+1} * \cdots * f_k \right).$$

• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

< □

Example

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g) = \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{F} P(F \mid E)\right)$$

$$\sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC)\right)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)\right)$$

13/16

Variable Elimination example

$$\begin{array}{c} A \\ \hline \\ G \\ \hline \\ H \\ \end{array}$$

Query: P(G | f); elimination ordering: A, H, E, D, B, C

$$P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B \mid A)P(C \mid B)$$
$$P(D \mid C)P(E \mid D)P(f \mid E)P(G \mid C)P(H \mid E)$$

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A) P(B \mid A) \right) P(C \mid B) \right) P(G \mid C) \\ \left(\sum_{D} P(D \mid C) \left(\sum_{E} P(E \mid D) P(f \mid E) \sum_{H} P(H \mid E) \right) \right)$$

Suppose you want to compute $P(X | e_1 \dots e_k)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.

Variable Elimination and Recursive Conditioning

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Recursive Conditioning is the search variant of variable elimination.
- They do the same additions and multiplications.
- Space and time complexity $O(nd^t)$, for *n* variables, domain size *d*, and treewidth *t*.
 - treewidth is the number of variables in the smallest factor. It is a property of the graph and the elimination ordering.
- Recursive conditioning never modifies or creates factors; it only evaluates them.