Variable Elimination

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Give a factorization, such as

$$
P(D)=\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)
$$

it does the innermost sums first, constructing representations of the intermediate factors:

- $\sum_{A} P(A) P(B \mid A)$ is a factor on B; call it $f_{1}(B)$.
- $\sum_{B} P(C \mid B) f_{1}(B)$ is a factor on C.
- Lecture covers:
- Factors and factor arithmetic
- Variable elimination algorithm

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.
- You can assign some or all of the variables of a factor:
- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{domain}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.
The former is also written as $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)_{X_{1}=v_{1}}$, etc.

Example factors

$$
\begin{aligned}
& r(X, Y, Z): \begin{array}{|ccc|c|}
\hline X & Y & Z & \text { val } \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.8 \\
\mathrm{f} & \mathrm{t} & \mathrm{t} & 0.4 \\
\mathrm{f} & \mathrm{t} & \mathrm{f} & 0.6 \\
\mathrm{f} & \mathrm{f} & \mathrm{t} & 0.3 \\
\mathrm{f} & \mathrm{f} & \mathrm{f} & 0.7 \\
\hline
\end{array} \\
& r(X=t, Y, Z): \begin{array}{|cc|c|}
\hline Y & Z & \text { val } \\
\hline \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array}
\end{aligned}
$$

Multiplying factors

The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} * f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} * f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z})
$$

Multiplying factors example

$f_{1}:$| A | B | val |
| :---: | :---: | :---: |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |
| $f_{2}:$ | | |

B	C	val
t	t	0.3
t	f	0.7
f	t	0.6
f	f	0.4

$f_{1} * f_{2}:$| A | B | C | val |
| :---: | :---: | :---: | :---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

Summing out variables

We can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Summing out a variable example

$f_{3}:$| A | B | C | val |
| :---: | :---: | :---: | :---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

$\sum_{B} f_{3}:$| A | C | val |
| :---: | :---: | :---: |
| t | t | 0.57 |
| t | f | 0.43 |
| f | t | 0.54 |
| f | f | 0.46 |

Queries and Evidence

- To compute the posterior probability of query Q given evidence $E=e$:

$$
\begin{aligned}
P & (Q \mid E=e) \\
& =\frac{P(Q, E=e)}{P(E=e)} \\
& =\frac{P(Q, E=e)}{\sum_{Q} P(Q, E=e)}
\end{aligned}
$$

- So the computation reduces to the probability of $P(Q, E=e)$
- then normalize at the end.

Probability of a conjunction

- The variables of the belief network are X_{1}, \ldots, X_{n}.
- The evidence is $Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}$
- To compute $P\left(Q, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$:
we add the other variables,
$Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\}-\{Q\}-\left\{Y_{1}, \ldots, Y_{j}\right\}$. and sum them out.
- We order the Z_{i} into an elimination ordering.

$$
\begin{aligned}
& P\left(Q, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} . \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} .
\end{aligned}
$$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $a b+a c$ efficiently?
- Distribute out a giving $a(b+c)$
- How can we compute $\sum_{z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ efficiently?
- Distribute out those factors that don't involve Z_{1}.

Variable elimination algorithm

To compute $P\left(Q \mid Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the $\left.\left\{Z_{1}, \ldots, Z_{k}\right\}\right)$ according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Q)$ by $\sum_{Q} f(Q)$.

Summing out a variable

To sum out a variable Z_{j} from a product f_{1}, \ldots, f_{k} of factors:

- Partition the factors into
- those that don't contain Z_{j}, say f_{1}, \ldots, f_{i},
- those that contain Z_{j}, say f_{i+1}, \ldots, f_{k}

Then:

$$
\sum_{z_{j}} f_{1} * \cdots * f_{k}=f_{1} * \cdots * f_{i} *\left(\sum_{z_{j}} f_{i+1} * \cdots * f_{k}\right)
$$

- Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_{k} by the new factor.

Example

$$
P(E \mid g)=\frac{P(E \wedge g)}{\sum_{E} P(E \wedge g)}
$$

$$
P(E \wedge g)
$$

$$
\begin{aligned}
= & \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A) P(B \mid A C) \\
& P(C) P(D \mid C) P(E \mid B) P(F \mid E) P(g \mid E D)
\end{aligned}
$$

$$
=\left(\sum_{F} P(F \mid E)\right)
$$

$$
\sum_{B} P(E \mid B) \sum_{C}\left(P(C)\left(\sum_{A} P(A) P(B \mid A C)\right)\right.
$$

$$
\left.\left(\sum_{D} P(D \mid C) P(g \mid E D)\right)\right)
$$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C

$$
\begin{aligned}
& P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A) P(B \mid A) P(C \mid B) \\
& P(D \mid C) P(E \mid D) P(f \mid E) P(G \mid C) P(H \mid E) \\
& =\sum_{C}\left(\sum_{B}\left(\sum_{A} P(A) P(B \mid A)\right) P(C \mid B)\right) P(G \mid C) \\
& \quad\left(\sum_{D} P(D \mid C)\left(\sum_{E} P(E \mid D) P(f \mid E) \sum_{H} P(H \mid E)\right)\right)
\end{aligned}
$$

Pruning Irrelevant Variables (Belief networks)

Suppose you want to compute $P\left(X \mid e_{1} \ldots e_{k}\right)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.

Variable Elimination and Recursive Conditioning

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Recursive Conditioning is the search variant of variable elimination.
- They do the same additions and multiplications.
- Space and time complexity $O\left(n d^{t}\right)$, for n variables, domain size d, and treewidth t.
- treewidth is the number of variables in the smallest factor. It is a property of the graph and the elimination ordering.
- Recursive conditioning never modifies or creates factors; it only evaluates them.

