Variable elimination is the dynamic programming variant of recursive conditioning.

Give a factorization, such as

\[
P(D) = \sum_C P(D \mid C) \sum_B P(C \mid B) \sum_A P(A)P(B \mid A)
\]

it does the innermost sums first, constructing representations of the intermediate factors:

- \[\sum_A P(A)P(B \mid A)\] is a factor on \(B\); call it \(f_1(B)\).
- \[\sum_B P(C \mid B)f_1(B)\] is a factor on \(C\).

Lecture covers:

- Factors and factor arithmetic
- Variable elimination algorithm
A factor is a representation of a function from a tuple of random variables into a number.

We write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.

You can assign some or all of the variables of a factor:

- $f(X_1 = v_1, X_2, \ldots, X_j)$, where $v_1 \in \text{domain}(X_1)$, is a factor on X_2, \ldots, X_j.
- $f(X_1 = v_1, X_2 = v_2, \ldots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i.

The former is also written as $f(X_1, X_2, \ldots, X_j)_{X_1 = v_1}$, etc.
Example factors

\[
\begin{array}{ccc|c}
X & Y & Z & \text{val} \\
\hline
\text{t} & \text{t} & \text{t} & 0.1 \\
\text{t} & \text{t} & \text{f} & 0.9 \\
\text{t} & \text{f} & \text{t} & 0.2 \\
\text{t} & \text{f} & \text{f} & 0.8 \\
\text{f} & \text{t} & \text{t} & 0.4 \\
\text{f} & \text{t} & \text{f} & 0.6 \\
\text{f} & \text{f} & \text{t} & 0.3 \\
\text{f} & \text{f} & \text{f} & 0.7 \\
\end{array}
\]

\[
r(X=t,Y,Z) = \begin{array}{ccc}
Y & Z & \text{val} \\
\hline
\text{t} & \text{t} & 0.1 \\
\text{t} & \text{f} & 0.9 \\
\text{f} & \text{t} & 0.2 \\
\text{f} & \text{f} & 0.8 \\
\end{array}
\]

\[
r(X=t,Y,Z) = \begin{array}{c}
Y \\
\hline
\text{t} & 0.9 \\
\text{f} & 0.8 \\
\end{array}
\]

\[
r(X=t,Y,Z) = 0.8
\]
The **product** of factor $f_1(X, Y)$ and $f_2(Y, Z)$, where Y are the variables in common, is the factor $(f_1 * f_2)(X, Y, Z)$ defined by:

$$(f_1 * f_2)(X, Y, Z) = f_1(X, Y)f_2(Y, Z).$$
Multiplying factors example

\[f_1: \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.1</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.2</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.8</td>
</tr>
</tbody>
</table>

\[f_2: \]

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.3</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.6</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[f_1 * f_2: \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>0.03</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>0.07</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>0.54</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>0.36</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>0.06</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>0.14</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>0.48</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Summing out variables

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \ldots, X_j)$$

$$= f(X_1 = v_1, \ldots, X_j) + \cdots + f(X_1 = v_k, \ldots, X_j)$$
Summing out a variable example

f_3:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>t t t</td>
<td>t t</td>
<td>t t t</td>
<td>0.03</td>
</tr>
<tr>
<td>t t f</td>
<td>t t f</td>
<td>t t f</td>
<td>0.07</td>
</tr>
<tr>
<td>t f t</td>
<td>t f t</td>
<td>t f t</td>
<td>0.54</td>
</tr>
<tr>
<td>t f f</td>
<td>t f f</td>
<td>t f f</td>
<td>0.36</td>
</tr>
<tr>
<td>f t t</td>
<td>f t t</td>
<td>f t t</td>
<td>0.06</td>
</tr>
<tr>
<td>f t f</td>
<td>f t f</td>
<td>f t f</td>
<td>0.14</td>
</tr>
<tr>
<td>f f t</td>
<td>f f t</td>
<td>f f t</td>
<td>0.48</td>
</tr>
<tr>
<td>f f f</td>
<td>f f f</td>
<td>f f f</td>
<td>0.32</td>
</tr>
</tbody>
</table>

$\sum_B f_3$:

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>t t</td>
<td>t t</td>
<td>0.57</td>
</tr>
<tr>
<td>t f</td>
<td>t f</td>
<td>0.43</td>
</tr>
<tr>
<td>f t</td>
<td>f t</td>
<td>0.54</td>
</tr>
<tr>
<td>f f</td>
<td>f f</td>
<td>0.46</td>
</tr>
</tbody>
</table>
To compute the posterior probability of query Q given evidence $E = e$:

$$P(Q \mid E = e) = \frac{P(Q, E = e)}{P(E = e)} = \frac{P(Q, E = e)}{\sum_Q P(Q, E = e)}.$$

So the computation reduces to the probability of $P(Q, E = e)$ then normalize at the end.
Probability of a conjunction

- The variables of the belief network are X_1, \ldots, X_n.
- The evidence is $Y_1 = v_1, \ldots, Y_j = v_j$.
- To compute $P(Q, Y_1 = v_1, \ldots, Y_j = v_j)$:
 we add the other variables,
 $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Q\} - \{Y_1, \ldots, Y_j\}$. and sum them out.
- We order the Z_i into an elimination ordering.

$$P(Q, Y_1 = v_1, \ldots, Y_j = v_j)$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} P(X_1, \ldots, X_n)_{Y_1 = v_1, \ldots, Y_j = v_j}.$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} \prod_{i=1}^{n} P(X_i | parents(X_i))_{Y_1 = v_1, \ldots, Y_j = v_j}.$$
Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute $ab + ac$ efficiently?
- Distribute out a giving $a(b + c)$
- How can we compute $\sum_{Z_1} \prod_{i=1}^{n} P(X_i \mid \text{parents}(X_i))$ efficiently?
- Distribute out those factors that don’t involve Z_1.
Variable elimination algorithm

To compute $P(Q \mid Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the \{Z_1, \ldots, Z_k\}) according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f(Q)$ by $\sum_Q f(Q)$.
Summing out a variable

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - those that don’t contain Z_j, say f_1, \ldots, f_i,
 - those that contain Z_j, say f_{i+1}, \ldots, f_k

Then:

$$
\sum_{Z_j} f_1 \cdot \ldots \cdot f_k = f_1 \cdot \ldots \cdot f_i \left(\sum_{Z_j} f_{i+1} \cdot \ldots \cdot f_k \right).
$$

- Explicitly construct a representation of the rightmost factor.
 Replace the factors f_{i+1}, \ldots, f_k by the new factor.
Example

\[
P(E | g) = \frac{P(E \land g)}{\sum_E P(E \land g)}
\]

\[
P(E \land g)
= \sum_F \sum_B \sum_C \sum_A \sum_D P(A)P(B | AC)P(C)P(D | C)P(E | B)P(F | E)P(g | ED)
= \left(\sum_F P(F | E)\right)
\]
\[
\sum_B P(E | B) \sum_C \left(P(C) \left(\sum_A P(A)P(B | AC) \right) \right)
\left(\sum_D P(D | C)P(g | ED) \right)
\]
Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C

$$P(G \mid f) \propto \sum_C \sum_B \sum_D \sum_E \sum_H \sum_A P(A)P(B \mid A)P(C \mid B)$$

$$P(D \mid C)P(E \mid D)P(f \mid E)P(G \mid C)P(H \mid E)$$

$$= \sum_C \left(\sum_B \left(\sum_A P(A)P(B \mid A) \right) P(C \mid B) \right) P(G \mid C)$$

$$\left(\sum_D P(D \mid C) \left(\sum_E P(E \mid D)P(f \mid E) \sum_H P(H \mid E) \right) \right)$$
Pruning Irrelevant Variables (Belief networks)

Suppose you want to compute $P(X \mid e_1 \ldots e_k)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.
Variable elimination is the dynamic programming variant of recursive conditioning.

Recursive Conditioning is the search variant of variable elimination.

They do the same additions and multiplications.

Space and time complexity \(O(nd^t)\), for \(n\) variables, domain size \(d\), and treewidth \(t\).

– treewidth is the number of variables in the smallest factor. It is a property of the graph and the elimination ordering.

Recursive conditioning never modifies or creates factors; it only evaluates them.