Variable Elimination

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Give a factorization, such as

$$P(D) = \sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A)P(B \mid A)$$

it does the innermost sums first, constructing representations of the intermediate factors:

- $ightharpoonup \sum_A P(A)P(B \mid A)$ is a factor on B; call it $f_1(B)$.
- $ightharpoonup \sum_B P(C \mid B) f_1(B)$ is a factor on C.
- Lecture covers:
 - ► Factors and factor arithmetic
 - ► Variable elimination algorithm

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- You can assign some or all of the variables of a factor:
 - ▶ $f(X_1 = v_1, X_2, ..., X_j)$, where $v_1 \in domain(X_1)$, is a factor on $X_2, ..., X_j$.
 - $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, ..., X_j)_{X_1 = v_1}$, etc.

Example factors

X	Y	Ζ	val
t	t	t	0.1
t	t	f	0.9
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4
f	t	f	0.6
f	f	t	0.3
f	f	f	0.7
	t t t f f	t t t t t t f f t f f f	t t t t t t t f t f t f f t f f f f t t

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

$$r(X=t, Y, Z=f): \begin{bmatrix} Y & \text{val} \\ t & 0.9 \\ f & 0.8 \end{bmatrix}$$

$$r(X=t, Y=f, Z=f) = 0.8$$

Multiplying factors

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Summing out variables

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$

= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Summing out a variable example

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Queries and Evidence

 To compute the posterior probability of query Q given evidence E = e:

$$P(Q \mid E = e)$$

$$= \frac{P(Q, E = e)}{P(E = e)}$$

$$= \frac{P(Q, E = e)}{\sum_{Q} P(Q, E = e)}.$$

- So the computation reduces to the probability of P(Q, E = e)
- then normalize at the end.

Probability of a conjunction

- The variables of the belief network are X_1, \ldots, X_n .
- The evidence is $Y_1 = v_1, \ldots, Y_j = v_j$
- To compute $P(Q, Y_1 = v_1, ..., Y_j = v_j)$: we add the other variables, $Z_1, ..., Z_k = \{X_1, ..., X_n\} \{Q\} \{Y_1, ..., Y_j\}$. and sum them out.
- We order the Z_i into an elimination ordering.

$$P(Q, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} ... \sum_{Z_1} P(X_1, ..., X_n) Y_1 = v_1, ..., Y_j = v_j.$$

$$= \sum_{Z_k} ... \sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i)) Y_1 = v_1, ..., Y_j = v_j.$$

Computing sums of products

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z_1 .

Variable elimination algorithm

To compute $P(Q \mid Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the non-observed non-query variables (the $\{Z_1,\ldots,Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors.
- Normalize by dividing the resulting factor f(Q) by $\sum_{Q} f(Q)$.

Summing out a variable

To sum out a variable Z_i from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - ▶ those that don't contain Z_j , say f_1, \ldots, f_i ,
 - ▶ those that contain Z_j , say f_{i+1}, \ldots, f_k

Then:

$$\sum_{Z_j} f_1 * \cdots * f_k = f_1 * \cdots * f_i * \left(\sum_{Z_j} f_{i+1} * \cdots * f_k \right).$$

• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

Example

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \land g)$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{F} P(F \mid E)\right)$$

$$\sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC)\right)\right)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)$$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C $P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B \mid A)P(C \mid B)$ $P(D \mid C)P(E \mid D)P(f \mid E)P(G \mid C)P(H \mid E)$

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A)P(B \mid A) \right) P(C \mid B) \right) P(G \mid C)$$
$$\left(\sum_{D} P(D \mid C) \left(\sum_{E} P(E \mid D)P(f \mid E) \sum_{H} P(H \mid E) \right) \right)$$

Pruning Irrelevant Variables (Belief networks)

Suppose you want to compute $P(X \mid e_1 \dots e_k)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.

Variable Elimination and Recursive Conditioning

- Variable elimination is the dynamic programming variant of recursive conditioning.
- Recursive Conditioning is the search variant of variable elimination.
- They do the same additions and multiplications.
- Space and time complexity $O(nd^t)$, for n variables, domain size d, and treewidth t.
 - treewidth is the number of variables in the smallest factor.
 It is a property of the graph and the elimination ordering.
- Recursive conditioning never modifies or creates factors; it only evaluates them.

