
Variable Elimination

Variable elimination is the dynamic programming variant of
recursive conditioning.

Give a factorization, such as

P(D) =
∑
C

P(D | C )
∑
B

P(C | B)
∑
A

P(A)P(B | A)

it does the innermost sums first, constructing representations
of the intermediate factors:
▶
∑

A P(A)P(B | A) is a factor on B; call it f1(B).
▶
∑

B P(C | B)f1(B) is a factor on C .

Lecture covers:
▶ Factors and factor arithmetic
▶ Variable elimination algorithm
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.

We write factor f on variables X1, . . . ,Xj as f (X1, . . . ,Xj).

You can assign some or all of the variables of a factor:
▶ f (X1 = v1,X2, . . . ,Xj), where v1 ∈ domain(X1), is a factor on

X2, . . . ,Xj .
▶ f (X1 = v1,X2 = v2, . . . ,Xj = vj) is a number that is the value

of f when each Xi has value vi .

The former is also written as f (X1,X2, . . . ,Xj)X1 = v1 , etc.
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Example factors

r(X ,Y ,Z ):

X Y Z val

t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X=t,Y ,Z ):

Y Z val

t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X=t,Y ,Z=f ):

Y val

t 0.9
f 0.8

r(X=t,Y=f ,Z=f ) = 0.8
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Multiplying factors

The product of factor f1(X ,Y ) and f2(Y ,Z ), where Y are the
variables in common, is the factor (f1 ∗ f2)(X ,Y ,Z ) defined by:

(f1 ∗ f2)(X ,Y ,Z ) = f1(X ,Y )f2(Y ,Z ).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 ∗ f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk}, from
factor f (X1, . . . ,Xj), resulting in a factor on X2, . . . ,Xj defined by:

(
∑
X1

f )(X2, . . . ,Xj)

= f (X1= v1, . . . ,Xj) + · · ·+ f (X1= vk , . . . ,Xj)
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Summing out a variable example

f3:

A B C val

t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val

t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Queries and Evidence

To compute the posterior probability of query Q given
evidence E = e:

P(Q | E = e)

=
P(Q,E = e)

P(E = e)

=
P(Q,E = e)∑
Q P(Q,E = e).

So the computation reduces to the probability of P(Q,E = e)

then normalize at the end.
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Probability of a conjunction

The variables of the belief network are X1, . . . ,Xn.

The evidence is Y1= v1, . . . ,Yj = vj

To compute P(Q,Y1= v1, . . . ,Yj = vj):
we add the other variables,
Z1, . . . ,Zk = {X1, . . . ,Xn} − {Q} − {Y1, . . . ,Yj}.
and sum them out.

We order the Zi into an elimination ordering.

P(Q,Y1= v1, . . . ,Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi | parents(Xi ))Y1 = v1,...,Yj = vj .
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Computing sums of products

Computation in belief networks reduces to computing the sums of
products.

How can we compute ab + ac efficiently?

Distribute out a giving a(b + c)

How can we compute
∑

Z1

∏n
i=1 P(Xi | parents(Xi ))

efficiently?

Distribute out those factors that don’t involve Z1.
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Variable elimination algorithm

To compute P(Q | Y1= v1 ∧ . . . ∧ Yj = vj):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

Sum out each of the non-observed non-query variables (the
{Z1, . . . ,Zk}) according to some elimination ordering.

Multiply the remaining factors.

Normalize by dividing the resulting factor f (Q) by
∑

Q f (Q).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.6 11 / 16



Summing out a variable

To sum out a variable Zj from a product f1, . . . , fk of factors:

Partition the factors into
▶ those that don’t contain Zj , say f1, . . . , fi ,
▶ those that contain Zj , say fi+1, . . . , fk

Then:

∑
Zj

f1∗ · · · ∗fk = f1∗ · · · ∗fi∗

∑
Zj

fi+1∗ · · · ∗fk

 .

Explicitly construct a representation of the rightmost factor.
Replace the factors fi+1, . . . , fk by the new factor.
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Example

A C

B D

E

F G

P(E | g) =
P(E ∧ g)∑
E P(E ∧ g)

P(E ∧ g)

=
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B | AC )

P(C )P(D | C )P(E | B)P(F | E )P(g | ED)

=

(∑
F

P(F | E )

)
∑
B

P(E | B)
∑
C

(
P(C )

(∑
A

P(A)P(B | AC )

)
(∑

D

P(D | C )P(g | ED)

))
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Variable Elimination example

A B C D E F

G H

Query: P(G | f ); elimination ordering: A,H,E ,D,B,C

P(G | f ) ∝
∑
C

∑
B

∑
D

∑
E

∑
H

∑
A

P(A)P(B | A)P(C | B)

P(D | C )P(E | D)P(f | E )P(G | C )P(H | E )

=
∑
C

(∑
B

(∑
A

P(A)P(B | A)

)
P(C | B)

)
P(G | C )(∑

D

P(D | C )

(∑
E

P(E | D)P(f | E )
∑
H

P(H | E )

))
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Pruning Irrelevant Variables (Belief networks)

Suppose you want to compute P(X | e1 . . . ek):
Prune any variables that have no observed or queried
descendents.

Connect the parents of any observed variable.

Remove arc directions.

Remove observed variables.

Remove any variables not connected to X in the resulting
(undirected) graph.
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Variable Elimination and Recursive Conditioning

Variable elimination is the dynamic programming variant of
recursive conditioning.

Recursive Conditioning is the search variant of variable
elimination.

They do the same additions and multiplications.

Space and time complexity O(nd t), for n variables, domain
size d , and treewidth t.
– treewidth is the number of variables in the smallest factor.
It is a property of the graph and the elimination ordering.

Recursive conditioning never modifies or creates factors; it
only evaluates them.
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