
Belief network inference

Main approaches to determine posterior distributions in graphical
models, depending on guarantees:

Exact inference: exploit the structure of the network to
eliminate (sum out) the non-observed, non-query variables one
at a time (recursive conditioning, variable elimination).

Guaranteed bounds of the conditional probabilities from above
and below, where bound becomes narrower with more
computation.

Probabilistic bounds, e.g., within 0.1 of the correct answer
95% of the time. Stochastic simulation: random cases are
generated according to the probability distributions.

Best effort to produce an approximation that may be good
enough. Variational methods: find the closest tractable
distribution to the target (posterior) distribution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 1 / 16

Queries and Evidence

To compute the posterior probability of query Q given
evidence E = e:

P(Q | E = e)

=
P(Q,E = e)

P(E = e)

=
P(Q,E = e)∑
Q P(Q,E = e).

summing over the values of variable Q

So the computation reduces to the probability of P(Q,E = e)

then normalize at the end.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 2 / 16

Probability of a conjunction

The variables of the belief network are X1, . . . ,Xn.

The evidence is Y1= v1, . . . ,Yj = vj

To compute P(Q,Y1= v1, . . . ,Yj = vj):
add the other variables,
Z1, . . . ,Zk = {X1, . . . ,Xn} − {Q} − {Y1, . . . ,Yj}.
and sum them out.

Order the Zi into an elimination ordering.

P(Q,Y1= v1, . . . ,Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi | parents(Xi))Y1 = v1,...,Yj = vj .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 3 / 16

Example

A B C D

Query P(D).

P(D) =
∑
A

∑
B

∑
C

P(A,B,C ,D)

=
∑
A

∑
B

∑
C

P(A)P(B | A)P(C | B)P(D | C)

Can be simplified to:

P(D) =
∑
A

P(A)
∑
B

P(B | A)
∑
C

P(C | B)P(D | C)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 4 / 16

Example: different elimination ordering

A B C D

Query P(D).

P(D) =
∑
C

∑
B

∑
A

P(A,B,C ,D)

=
∑
C

∑
B

∑
A

P(A)P(B | A)P(C | B)P(D | C)

=
∑
C

P(D | C)
∑
B

P(C | B)
∑
A

P(A)P(B | A)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 5 / 16

Naive Search Algorithm

Computes the value of summing variables from a product of
factors

Input:

Con – a context – an assignment of a value to some of the
variables

Fs – a set of factors (functions of variables)

Output: value summing out the unassigned variables:∑
X1...Xk

∏
Fs

where X1 . . .Xk are variables not assigned in Con

Evaluate a factor as soon as all its variables are assigned

Recursively branch on a variable not assigned in Con

Intially: Con is observations, and an assigment to the query
variable, Fs is all the factors.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 6 / 16

Probabilistic Inference using Depth-first search

1: procedure prob dfs(Con : context,Fs : factors)
2: if Fs = {} then
3: return 1
4: else if f ∈ Fs can be evaluated in Con then
5: return eval(f ,Con) ∗ prob dfs(Con,Fs \ {f })
6: else
7: select variable X in not assigned in Con
8: sum := 0
9: for val in domain(X) do

10: sum := sum + prob dfs(Con ∪ {X=val},Fs)
11: return sum

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 7 / 16

Search Tree

A B C D

P(D) =
∑
C

P(D | C)
∑
B

P(C | B)
∑
A

P(A)P(B | A)

A A A A A AAA AAA AP(A)
P(B|A)

A A

B B B B B

C C C

B

D

C

D

P(C|B)

P(D|C)

(b)(a) (c)
Note:

∑
B P(C | B)

∑
A P(A)P(B | A) does not depend on D∑

A P(A)P(B | A) does not depend on C or D

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 8 / 16

Decomposition

A B C D

P(B | d)

First split on B (to compute the normalizing constant):

prob dfs({B=false,D=true},
{P(D | C),P(C | B),P(B | A),P(A)})

This can be decomposed into two independent problems:

prob dfs({B=false,D=true}, {P(D | C),P(C | B)})
∗ prob dfs({B=false,D=true}, {P(B | A),P(A)})

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 9 / 16

Inference via factorization in graphical models

A C

B D

E

F G

P(E | g) =
P(E ∧ g)∑
E P(E ∧ g)

P(E ∧ g)

=
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B | AC)

P(C)P(D | C)P(E | B)P(F | E)P(g | ED)

=

(∑
F

P(F | E)

)
∑
B

P(E | B)
∑
C

(
P(C)

(∑
A

P(A)P(B | AC)

)
(∑

D

P(D | C)P(g | ED)

))

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 10 / 16

Recursive Conditioning

Adds to naive search:

Recognize when an assignment decomposes the problem into
independent subproblems.

Cache already computed values. The cache is checked before
evaluating any query.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 11 / 16

Recursive Conditioning

Computes sum from outside in

Input:

Context - assignment of values to variables

Set of factors

Output: value of summing out other variables
Outline:

Evaluate a factor as soon as all its variables are assigned

Cache values already computed

Recognize disconnected components

Recursively branch on a variable

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 12 / 16

Primitive operations for the algorithm

cache is a global variable that maps ⟨Con,Fs⟩ pairs into a real
value.
It is initially it has ⟨{}, {}⟩ mapping to 1.

vars(F) returns the variables in factor F .
vars(Fs) returns the variables that appear in any factor in Fs.

eval(F ,Con) is the value of F given context Con. It is only
called when Con assigns values to all of the variables in F .

Fs = Fs1 ⊎ Fs2 is the disjoint union, meaning Fs1 ̸= {},
Fs2 ̸= {}, Fs1 ∩ Fs2 = {}, Fs = Fs1 ∪ Fs2
This step recognizes when the graph is disconnected.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 13 / 16

Recursive Conditioning

procedure rc(Con : context, Fs : set of factors):
if Fs = {} return 1
if ⟨Con,Fs⟩ is in cache with value v Recall

return v
else if there is a variable in Con that is not in any factor in Fs

return rc({X = v ∈ Con : X ∈ vars(Fs)},Fs) Forget
else if f ∈ Fs can be evaluated in Con

return eval(f ,Con)× rc(Con,Fs \ {f }) Evaluate
else if Fs = Fs1 ⊎ Fs2 where vars(Fs1) ∩ vars(Fs2) are all assigned

return rc(Con,Fs1)× rc(Con,Fs2) Disconnected
else select variable X ∈ vars(Fs) \ vars(Con) Branch

sum := 0
for each v ∈ domain(X)

sum := sum + rc(Con ∪ {X = v},Fs)
add ⟨Con,Fs⟩ with value sum to cache Remember
return sum

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 14 / 16

Exploiting Structure in Recursive Conditioning

How can we exploit determinism (zero probabilities)?

How can we exploit context-specific independencies; the
structure of decision trees or rules?

How can we handle various representations of conditional
probabilities / factors

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 15 / 16

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 16 / 16

