Belief network inference

Main approaches to determine posterior distributions in graphical models, depending on guarantees:

- Exact inference: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time (recursive conditioning, variable elimination).
- Guaranteed bounds of the conditional probabilities from above and below, where bound becomes narrower with more computation.
- Probabilistic bounds, e.g., within 0.1 of the correct answer 95% of the time. Stochastic simulation: random cases are generated according to the probability distributions.
- Best effort to produce an approximation that may be good enough. Variational methods: find the closest tractable distribution to the target (posterior) distribution.

Queries and Evidence

- To compute the posterior probability of query Q given evidence $E=e$:

$$
\begin{aligned}
P & (Q \mid E=e) \\
& =\frac{P(Q, E=e)}{P(E=e)} \\
& =\frac{P(Q, E=e)}{\sum_{Q} P(Q, E=e)}
\end{aligned}
$$

summing over the values of variable Q

- So the computation reduces to the probability of $P(Q, E=e)$
- then normalize at the end.

Probability of a conjunction

- The variables of the belief network are X_{1}, \ldots, X_{n}.
- The evidence is $Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}$
- To compute $P\left(Q, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$:
add the other variables,
$Z_{1}, \ldots, Z_{k}=\left\{X_{1}, \ldots, X_{n}\right\}-\{Q\}-\left\{Y_{1}, \ldots, Y_{j}\right\}$. and sum them out.
- Order the Z_{i} into an elimination ordering.

$$
\begin{aligned}
& P\left(Q, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right) \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} P\left(X_{1}, \ldots, X_{n}\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} . \\
& \quad=\sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right)_{Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}} .
\end{aligned}
$$

Example

Query $P(D)$.

$$
\begin{aligned}
P(D) & =\sum_{A} \sum_{B} \sum_{C} P(A, B, C, D) \\
& =\sum_{A} \sum_{B} \sum_{C} P(A) P(B \mid A) P(C \mid B) P(D \mid C)
\end{aligned}
$$

Can be simplified to:

$$
P(D)=\sum_{A} P(A) \sum_{B} P(B \mid A) \sum_{C} P(C \mid B) P(D \mid C)
$$

Example: different elimination ordering

Query $P(D)$.

$$
\begin{aligned}
P(D) & =\sum_{C} \sum_{B} \sum_{A} P(A, B, C, D) \\
& =\sum_{C} \sum_{B} \sum_{A} P(A) P(B \mid A) P(C \mid B) P(D \mid C) \\
& =\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)
\end{aligned}
$$

Naive Search Algorithm

- Computes the value of summing variables from a product of factors
Input:
- Con - a context - an assignment of a value to some of the variables
- Fs - a set of factors (functions of variables)

Output: value summing out the unassigned variables:

$$
\sum_{x_{1}, x_{x}} \Pi_{1}
$$

where $X_{1} \ldots X_{k}$ are variables not assigned in Con

- Evaluate a factor as soon as all its variables are assigned
- Recursively branch on a variable not assigned in Con
- Intially: Con is observations, and an assigment to the query variable, $F s$ is all the factors.

Probabilistic Inference using Depth-first search

: procedure prob_dfs(Con : context, Fs : factors)
2: \quad if $F s=\{ \}$ then
3: return 1
4: else if $f \in F s$ can be evaluated in Con then 5: \quad return eval(f, Con) $*$ prob_dfs $^{\text {(Con }, ~ F s ~} \backslash\{f\}$)
6: else

7:
8: \quad sum $:=0$
9:
10:
11:
return sum select variable X in not assigned in Con
for val in domain (X) do sum $:=s u m+$ prob_dfs $(\operatorname{Con} \cup\{X=v a l\}, F s)$

Search Tree

$$
P(D)=\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)
$$

Note: $\sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)$ does not depend on D $\sum_{A} P(A) P(B \mid A)$ does not depend on C or D

Decomposition

$$
P(B \mid d)
$$

First split on B (to compute the normalizing constant):

$$
\begin{aligned}
\operatorname{prob} _d f s & (\{B=\text { false }, D=\text { true }\} \\
& \{P(D \mid C), P(C \mid B), P(B \mid A), P(A)\})
\end{aligned}
$$

This can be decomposed into two independent problems:

$$
\begin{aligned}
\text { prob_dfs } & (\{B=\text { false }, D=\text { true }\},\{P(D \mid C), P(C \mid B)\}) \\
& * \text { prob_dfs }(\{B=\text { false }, D=\text { true }\},\{P(B \mid A), P(A)\})
\end{aligned}
$$

Inference via factorization in graphical models

$$
P(E \mid g)=\frac{P(E \wedge g)}{\sum_{E} P(E \wedge g)}
$$

$$
P(E \wedge g)
$$

$$
\begin{aligned}
= & \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A) P(B \mid A C) \\
& P(C) P(D \mid C) P(E \mid B) P(F \mid E) P(g \mid E D)
\end{aligned}
$$

$$
=\left(\sum_{F} P(F \mid E)\right)
$$

$$
\sum_{B} P(E \mid B) \sum_{C}\left(P(C)\left(\sum_{A} P(A) P(B \mid A C)\right)\right.
$$

$$
\left.\left(\sum_{D} P(D \mid C) P(g \mid E D)\right)\right)
$$

Recursive Conditioning

Adds to naive search:

- Recognize when an assignment decomposes the problem into independent subproblems.
- Cache already computed values. The cache is checked before evaluating any query.

Recursive Conditioning

- Computes sum from outside in Input:
- Context - assignment of values to variables
- Set of factors

Output: value of summing out other variables
Outline:

- Evaluate a factor as soon as all its variables are assigned
- Cache values already computed
- Recognize disconnected components
- Recursively branch on a variable

Primitive operations for the algorithm

- cache is a global variable that maps \langle Con, Fs \rangle pairs into a real value.
It is initially it has $\langle\},\{ \}\rangle$ mapping to 1 .
- vars (F) returns the variables in factor F. $\operatorname{vars}(F s)$ returns the variables that appear in any factor in Fs.
- eval(F, Con) is the value of F given context Con. It is only called when Con assigns values to all of the variables in F.
- $F s=F s_{1} \uplus F_{s_{2}}$ is the disjoint union, meaning $F s_{1} \neq\{ \}$, $F s_{2} \neq\{ \}, F s_{1} \cap F s_{2}=\{ \}, F s=F s_{1} \cup F s_{2}$
This step recognizes when the graph is disconnected.

Recursive Conditioning

procedure $r c($ Con : context, Fs: set of factors):
if $F s=\{ \}$ return 1
if \langle Con, Fs \rangle is in cache with value v

Recall

 return velse if there is a variable in Con that is not in any factor in Fs return $r c(\{X=v \in \operatorname{Con}: X \in \operatorname{vars}(F s)\}$, Fs) Forget
else if $f \in F s$ can be evaluated in Con return eval $(f$, Con $) \times r c\left(C o n, F_{s} \backslash\{f\}\right) \quad$ Evaluate
else if $F s=F s_{1} \uplus F s_{2}$ where $\operatorname{vars}\left(F s_{1}\right) \cap \operatorname{vars}\left(F s_{2}\right)$ are all assigned return $r c\left(\right.$ Con, $\left.F s_{1}\right) \times r c\left(C o n, F s_{2}\right) \quad$ Disconnected
else select variable $X \in \operatorname{vars}(F s) \backslash \operatorname{vars}(C o n)$

$$
\text { sum }:=0
$$

for each $v \in \operatorname{domain}(X)$

$$
\text { sum }:=\operatorname{sum}+r c(\operatorname{Con} \cup\{X=v\}, F s)
$$

add $\langle C o n, F s\rangle$ with value sum to cache return sum

Exploiting Structure in Recursive Conditioning

- How can we exploit determinism (zero probabilities)?
- How can we exploit context-specific independencies; the structure of decision trees or rules?
- How can we handle various representations of conditional probabilities / factors

