Belief network inference

Main approaches to determine posterior distributions in graphical
models, depending on guarantees:

@ Exact inference: exploit the structure of the network to
eliminate (sum out) the non-observed, non-query variables one
at a time (recursive conditioning, variable elimination).

@ Guaranteed bounds of the conditional probabilities from above
and below, where bound becomes narrower with more
computation.

@ Probabilistic bounds, e.g., within 0.1 of the correct answer
05% of the time. Stochastic simulation: random cases are
generated according to the probability distributions.

@ Best effort to produce an approximation that may be good
enough. Variational methods: find the closest tractable
distribution to the target (posterior) distribution.
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Queries and Evidence

@ To compute the posterior probability of query @ given
evidence E =e:
P(Q| E=e)
P(Q,E=e)
P(E=¢e)
P(Q,E=e)
Yo P(Q E=e).

summing over the values of variable Q

@ So the computation reduces to the probability of P(Q, E =¢€)

@ then normalize at the end.
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Probability of a conjunction

@ The variables of the belief network are Xi,..., X,.
@ The evidenceis Y1=v1,...,Yj=v;
@ To compute P(Q, Yi=v1,...,Y;=Vj):

add the other variables,

21, 2k ={X1,..., Xa} —{Q} — {VY1,..., Yj}.
and sum them out.

@ Order the Z; into an elimination ordering.
(Q Y1:V1,...,Y'IVJ')

Z ZPXl,..., Wiz ¥im
Z ZHPX | parents(Xi)) vy = wi,...v; = y;-

Z; i=1
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OO0 020

Query P(D).
=> Y > P(AB,C,D)
A B C
=>">"> " P(AP(B|AP(C|B)P(D | C)
A B C

Can be simplified to:

P(D) = ZP )> P(B|A)> P(C|B)P(D|C)
C

B
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Example: different elimination ordering

O OO0

Query P(D).
:ZZZPABCD
C B A
:ZZZP P(B | AYP(C | B)P(D | C)
C B
=Y P(D|C)>_ P C\B)ZP P(B| A)
C B
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Naive Search Algorithm

@ Computes the value of summing variables from a product of
factors

Input:

@ Con — a context — an assignment of a value to some of the
variables

e Fs — a set of factors (functions of variables)
Output: value summing out the unassigned variables:

Z HFS

X1... Xk

where Xj ... X, are variables not assigned in Con
@ Evaluate a factor as soon as all its variables are assigned
@ Recursively branch on a variable not assigned in Con

@ Intially: Con is observations, and an assigment to the query
variable, Fs is all the factors.
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Probabilistic Inference using Depth-first search

1. procedure prob_dfs(Con : context, Fs : factors)

2 if Fs = {} then

3 return 1

4: else if f € Fs can be evaluated in Con then

5: return eval(f, Con) * prob_dfs(Con, Fs \ {f})
6: else

7 select variable X in not assigned in Con

8 sum =0

0: for val in domain(X) do
10: sum := sum + prob_dfs(Con U {X=val}, Fs)
11: return sum
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O OnO0n0
P(D) = Z D|C)ZPC|BZP P(B| A)

Note: > g P(C | B)> 4, P(A)P(B | A) does not depend on D
> aP(A)P(B | A) does not depend on C or D
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OnOnOn O

P(B | d)
First split on B (to compute the normalizing constant):

prob_dfs({ B=false, D=true},
{P(D ] C),P(C|B),P(B|A),P(A)})

This can be decomposed into two independent problems:

prob_dfs({B=false, D=true}, {P(D | C), P(C | B)})
x prob_dfs({ B=false, D=true}, {P(B | A), P(A)})
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Inference via factorization in graphical models

P(E/\g)

PELE) = S PEng

P(E N g)

(A% }? = ;g;;;P(A)P(B|AC)

P(C)P(D | C)P(E | B)P(F | E)P(g | ED)

(e
ZB:P(E|B)ZC:< (ZA:P B|AC)
@ ‘ (ZD: P(D | C)P(g | ED)))
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Recursive Conditioning

Adds to naive search:

@ Recognize when an assignment decomposes the problem into
independent subproblems.

@ Cache already computed values. The cache is checked before
evaluating any query.
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Recursive Conditioning

@ Computes sum from outside in

Input:
o Context - assignment of values to variables
@ Set of factors

Output: value of summing out other variables
Outline:

@ Evaluate a factor as soon as all its variables are assigned
@ Cache values already computed

@ Recognize disconnected components

°

Recursively branch on a variable

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 9.5 12 /16



Primitive operations for the algorithm

@ cache is a global variable that maps (Con, Fs) pairs into a real
value.
It is initially it has ({}, {}) mapping to 1.

@ vars(F) returns the variables in factor F.
vars(Fs) returns the variables that appear in any factor in Fs.
@ eval(F, Con) is the value of F given context Con. It is only
called when Con assigns values to all of the variables in F.
@ Fs = Fs; W Fsp is the disjoint union, meaning Fs; # {},
Fsy #{}, FsiNFs, ={}, Fs = Fs; U Fs,
This step recognizes when the graph is disconnected.
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Recursive Conditioning

procedure rc(Con : context, Fs : set of factors):
if Fs = {} return 1
if (Con, Fs) is in cache with value v Recall
return v
else if there is a variable in Con that is not in any factor in Fs
return rc({X = v € Con: X € vars(Fs)}, Fs) Forget
else if f € Fs can be evaluated in Con

return eval(f, Con) x rc(Con, Fs \ {f}) Evaluate
else if Fs = Fs; W Fsy where vars(Fsy) N vars(Fs) are all assigned

return rc(Con, Fs1) x rc(Con, Fsy) Disconnected
else select variable X € vars(Fs) \ vars(Con)

sum :=0

for each v € domain(X)

sum := sum + rc(Con U {X = v}, Fs)
add (Con, Fs) with value sum to cache Remember
return sum
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Exploiting Structure in Recursive Conditioning

@ How can we exploit determinism (zero probabilities)?

@ How can we exploit context-specific independencies; the
structure of decision trees or rules?

@ How can we handle various representations of conditional
probabilities / factors
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