## Understanding Independence: Common ancestors

- Alarm and Smoke are dependent given \{\}
- Alarm and Smoke are independent given Fire
- Intuitively, Fire can explain Alarm and Smoke; learning one can affect the other by changing the belief in Fire.


## Understanding Independence: Chain



- Alarm and Report are dependent given \{\}
- Alarm and Report are independent given Leaving
- The (only) way that the Alarm affects Report is by affecting Leaving.


## Understanding Independence: Common descendants



- Tampering and Fire are independent given \{\}
- Tampering and Fire are dependent given Alarm
- Intuitively, Tampering can explain away Fire


## Understanding independence: example


(a) On which given probabilities does $P(N)$ depend?
(b) If you were to observe a value for $B$, which variables' probabilities will change?
(c) If you were to observe a value for $N$, which variables' probabilities will change?

## Understanding independence: questions


(d) Suppose you had observed a value for $M$; if you were to then observe a value for $N$, which variables' probabilities will change?
(e) Suppose you had observed $B$ and $Q$; which variables' probabilities will change when you observe $N$ ?

## What variables are affected by observing?

- If you observe variable(s) $\bar{Y}$, the variables whose posterior probability is different from their prior are:
- ancestors of $\bar{Y}$ and
- their descendants.
- Intuitively (assuming network ordered so causes are before effects):
- You do abduction to possible causes and
- prediction from the causes.


## Three types of meetings between arcs


(a) chain

(b) fork

(c) collider

## D-separation



- A path $p$ can follow arrows in either direction.
- Observations Zs block a path $p$ if:
(a) $p$ contains a chain $A \rightarrow B \rightarrow C$, and $B \in Z s$
(b) $p$ contains a fork $A \leftarrow B \rightarrow C$, and $B \in Z s$
(c) $p$ contains a collider $A \rightarrow B \leftarrow C$, and $B$, and all its descendants, are not in Zs
- $X$ is d-separated from $Y$ given $Z s$ if every path between $X$ and $Y$ is blocked by $Z s$
- $X$ is independent $Y$ given $Z s$ for all conditional probabilities iff $X$ is d-separated from $Y$ given $Z s$


## Example



- Are $X$ and $Y$ d-separated by $\}$ ?
- Are $X$ and $Y$ d-separated by $\{K\}$ ?
- Are $X$ and $Y$ d-separated by $\{K, N\}$ ?
- Are $X$ and $Y$ d-separated by $\{K, N, P\}$ ?


## Markov Random Field

A Markov random field is composed of

- of a set of random variables: $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and
- a set of factors $\left\{f_{1}, \ldots, f_{m}\right\}$, where a factor is a non-negative function of a subset of the variables.
and defines a joint probability distribution:

$$
\begin{aligned}
P(\mathbf{X}=\mathbf{x}) & \propto \prod_{k} f_{k}\left(\mathbf{X}_{k}=\mathbf{x}_{k}\right) . \\
P(\mathbf{X}=\mathbf{x}) & =\frac{1}{Z} \prod_{k} f_{k}\left(\mathbf{X}_{k}=\mathbf{x}_{k}\right) . \\
Z & =\sum_{\mathbf{x}} \prod_{k} f_{k}\left(\mathbf{X}_{k}=\mathbf{x}_{k}\right)
\end{aligned}
$$

where $f_{k}\left(\mathbf{X}_{k}\right)$ is a factor on $\mathbf{X}_{k} \subseteq \mathbf{X}$, and $\mathbf{x}_{k}$ is $\mathbf{x}$ projected onto $\mathbf{X}_{k}$.
$Z$ is a normalization constant known as the partition function.

## Markov Networks and Factor graphs

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A belief network is a type of Markov random field where the factors represent conditional probabilities, there is a factor for each variable, and directed graph is acyclic.


## Factor graph and Markov network example



Factor Graph


Markov Network

## Independence in a Markov Network

- The Markov blanket of a variable $X$ is the set of variables that are in factors with $X$.
- A variable is independent of the other variables given its Markov blanket.
- $X$ is connected to $Y$ given $\bar{Z}$ if there is a path from $X$ to $Y$ in the Markov network, which does not contain an element of $Z$.
- $X$ is separated from $Y$ given $\bar{Z}$ if it is not connected.
- A positive factor is one that does not contain zero values.
- $\bar{X}$ is independent $\bar{Y}$ given $\bar{Z}$ for all positive factors iff $\bar{X}$ is separated from $\bar{Y}$ given $\bar{Z}$


## Canonical Representations

- The parameters of a graphical model are the numbers that define the model.
- A belief network is a canonical representation: given the structure and the distribution, the parameters are uniquely determined.
- A Markov random field is not a canonical representation. Many different parameterizations result in the same distribution.

