Understanding Independence: Common ancestors

- *Alarm* and *Smoke* are dependent given {}.
- *Alarm* and *Smoke* are independent given *Fire*.
- Intuitively, *Fire* can explain *Alarm* and *Smoke*; learning one can affect the other by changing the belief in *Fire*.
Alarm and Report are dependent given \{\}\n
Alarm and Report are independent given Leaving

The (only) way that the Alarm affects Report is by affecting Leaving.
Tampering and Fire are independent given \emptyset

Tampering and Fire are dependent given Alarm

Intuitively, Tampering can explain away Fire
(a) On which given probabilities does $P(N)$ depend?

(b) If you were to observe a value for B, which variables’ probabilities will change?

(c) If you were to observe a value for N, which variables’ probabilities will change?
(d) Suppose you had observed a value for \(M \); if you were to then observe a value for \(N \), which variables’ probabilities will change?

(e) Suppose you had observed \(B \) and \(Q \); which variables’ probabilities will change when you observe \(N \)?
If you observe variable(s) \(\overline{Y} \), the variables whose posterior probability is different from their prior are:

- ancestors of \(\overline{Y} \) and
- their descendants.

Intuitively (assuming network ordered so causes are before effects):

- You do **abduction** to possible causes and
- **prediction** from the causes.
Three types of meetings between arcs

(a) chain (b) fork (c) collider
D-separation

- A **path** p can follow arrows in either direction.
- Observations Zs **block** a path p if:
 1. p contains a **chain** $A \rightarrow B \rightarrow C$, and $B \in Z$s
 2. p contains a **fork** $A \leftarrow B \rightarrow C$, and $B \in Z$s
 3. p contains a **collider** $A \rightarrow B \leftarrow C$, and B, and all its descendants, are **not** in Zs
- X is **d-separated** from Y given Zs if every path between X and Y is blocked by Zs
- X is independent Y given Zs for all conditional probabilities iff X is d-separated from Y given Zs
Example

- Are X and Y d-separated by \emptyset?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?
- Are X and Y d-separated by $\{K, N, P\}$?
A Markov random field is composed of

- of a set of random variables: $X = \{X_1, X_2, \ldots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(X = x) \propto \prod_{k} f_k(X_k = x_k).$$

$$P(X = x) = \frac{1}{Z} \prod_{k} f_k(X_k = x_k).$$

$$Z = \sum_{x} \prod_{k} f_k(X_k = x_k)$$

where $f_k(X_k)$ is a factor on $X_k \subseteq X$, and x_k is x projected onto X_k. Z is a normalization constant known as the partition function.
A **factor graph** is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.

A **Markov network** is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.

A **belief network** is a type of Markov random field where the factors represent conditional probabilities, there is a factor for each variable, and directed graph is acyclic.
Factor graph and Markov network example

Factor Graph

Markov Network

\[f(A, B, C) \]
\[f(B, D) \]
\[f(C, E) \]

© 2023 D. L. Poole and A. K. Mackworth
The Markov blanket of a variable X is the set of variables that are in factors with X.

A variable is independent of the other variables given its Markov blanket.

X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.

X is separated from Y given \overline{Z} if it is not connected.

A positive factor is one that does not contain zero values.

\overline{X} is independent \overline{Y} given \overline{Z} for all positive factors iff \overline{X} is separated from \overline{Y} given \overline{Z}.
The parameters of a graphical model are the numbers that define the model.

A belief network is a canonical representation: given the structure and the distribution, the parameters are uniquely determined.

A Markov random field is not a canonical representation. Many different parameterizations result in the same distribution.