• Alarm and Smoke are given {}

Image: I

• Alarm and Smoke are dependent given {}

- Alarm and Smoke are dependent given {}
- Alarm and Smoke are given Fire

- Alarm and Smoke are dependent given {}
- Alarm and Smoke are independent given Fire

- Alarm and Smoke are dependent given {}
- Alarm and Smoke are independent given Fire
- Intuitively, *Fire* can explain *Alarm* and *Smoke*; learning one can affect the other by changing the belief in *Fire*.

• Alarm and Report are given {}

< 🗆 I

• Alarm and Report are dependent given {}

- Alarm and Report are dependent given {}
- Alarm and Report are given

Leaving

- Alarm and Report are dependent given {}
- Alarm and Report are independent given Leaving

- Alarm and Report are dependent given {}
- Alarm and Report are independent given Leaving
- The (only) way that the *Alarm* affects *Report* is by affecting *Leaving*.

• Tampering and Fire are given {}

• *Tampering* and *Fire* are independent given {}

< 🗆 .

- *Tampering* and *Fire* are independent given {}
- Tampering and Fire are given Alarm

- *Tampering* and *Fire* are independent given {}
- Tampering and Fire are dependent given Alarm

- *Tampering* and *Fire* are independent given {}
- Tampering and Fire are dependent given Alarm
- Intuitively, *Tampering* can explain away *Fire*

- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C Alarm is independent of Fire given {}
- D All of the above independencies hold
- E There are no independencies

- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C Alarm is independent of Smoke given {}
- D All of the above independencies hold
- E There are no independencies

- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C Alarm is independent of Fire given {}
- D All of the above independencies hold
- E There are no independencies

- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C Alarm is independent of Fire given {}
- D All of the above independencies hold
- E There are no independencies

Clicker Question

Which network best fits a fire alarm that only detects the heat of the fire?

Image: Ima

Which network best fits a smoke alarm (that only detects smoke)?

Clicker Question

Which network best fits a fire alarm that detects both smoke and the heat of the fire?

/ 22

Clicker Question

Which network best fits a burglary alarm that doesn't detect heat or smoke?

Image: Image:

Understanding independence: example

(a) On which given probabilities does P(N) depend?

Understanding independence: example

- (a) On which given probabilities does P(N) depend?
- (b) If you were to observe a value for *B*, which variables' probabilities will change?

Understanding independence: example

- (a) On which given probabilities does P(N) depend?
- (b) If you were to observe a value for *B*, which variables' probabilities will change?
- (c) If you were to observe a value for N, which variables' probabilities will change?

Understanding independence: questions

(d) Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?

Understanding independence: questions

- (d) Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?
- (e) Suppose you had observed *B* and *Q*; which variables' probabilities will change when you observe *N*?

13 / 22

- If you observe variable(s) \overline{Y} , the variables whose posterior probability is different from their prior are:
 - ancestors of \overline{Y} and
 - their descendants.

14 / 22

- If you observe variable(s) \overline{Y} , the variables whose posterior probability is different from their prior are:
 - ancestors of \overline{Y} and
 - their descendants.
- Intuitively (assuming network ordered so causes are before effects):
 - You do abduction to possible causes and
 - prediction from the causes.

Three types of meetings between arcs

D-separation

- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs

D-separation

- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs
- X is d-separated from Y given Zs if every path between X and Y is blocked by Zs

- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs
- X is d-separated from Y given Zs if every path between X and Y is blocked by Zs
- X is independent Y given Zs for all conditional probabilities iff X is d-separated from Y given Zs

Example

• Are X and Y d-separated by {}?

Example

- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?

Example

- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?

Example

- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?
- Are X and Y d-separated by $\{K, N, P\}$?

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(\mathbf{X} = \mathbf{x}) \propto \prod_{k} f_k(\mathbf{X}_k = \mathbf{x}_k).$$

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(\mathbf{X} = \mathbf{x}) \propto \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}) .$$

$$P(\mathbf{X} = \mathbf{x}) = \frac{1}{Z} \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}) .$$

$$Z = \sum_{\mathbf{x}} \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k})$$

where $f_k(\mathbf{X}_k)$ is a factor on $\mathbf{X}_k \subseteq \mathbf{X}$, and \mathbf{x}_k is \mathbf{x} projected onto \mathbf{X}_k . *Z* is a normalization constant known as the partition function.

- L

• A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A belief network is a type of Markov random field where

< □

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A belief network is a type of Markov random field where the factors represent conditional probabilities, there is a factor for each variable, and directed graph is acyclic.

< 🗆 I

Factor graph and Markov network example

Markov Network

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.
- A positive factor is one that does not contain zero values.
- \overline{X} is independent \overline{Y} given \overline{Z} for all positive factors iff \overline{X} is separated from \overline{Y} given \overline{Z}

< □

- The parameters of a graphical model are the numbers that define the model.
- A belief network is a canonical representation: given the structure and the distribution, the parameters are uniquely determined.
- A Markov random field is not a canonical representation. Many different parameterizations result in the same distribution.