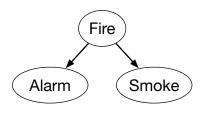
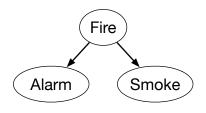
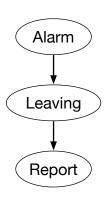
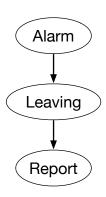
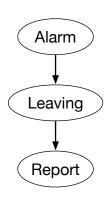

Fire Smoke


Alarm and Smoke are given {}

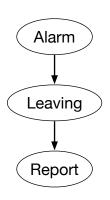

Alarm and Smoke are dependent given {}


- Alarm and Smoke are dependent given {}
- Alarm and Smoke are given Fire

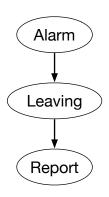

- Alarm and Smoke are dependent given {}
- Alarm and Smoke are independent given Fire


- Alarm and Smoke are dependent given {}
- Alarm and Smoke are independent given Fire
- Intuitively, Fire can explain Alarm and Smoke; learning one can affect the other by changing the belief in Fire.

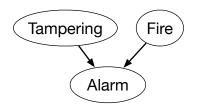
Alarm and Report are given {}

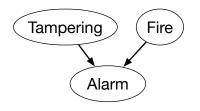


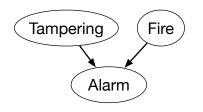
Alarm and Report are dependent given {}

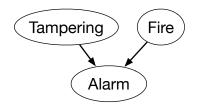


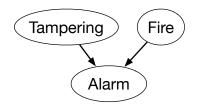
- Alarm and Report are dependent given {}
- Alarm and Report are given

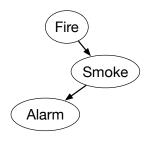

Leaving

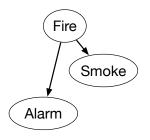

- Alarm and Report are dependent given {}
- Alarm and Report are independent given Leaving

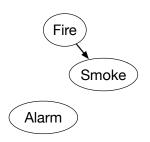

- Alarm and Report are dependent given {}
- Alarm and Report are independent given Leaving
- The (only) way that the Alarm affects Report is by affecting Leaving.

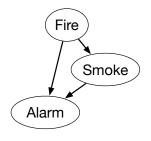

• Tampering and Fire are given {}


Tampering and Fire are independent given {}

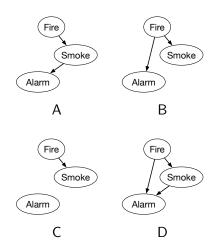

- Tampering and Fire are independent given {}
- Tampering and Fire are given Alarm


- Tampering and Fire are independent given {}
- Tampering and Fire are dependent given Alarm

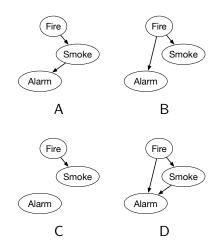

- Tampering and Fire are independent given {}
- Tampering and Fire are dependent given Alarm
- Intuitively, Tampering can explain away Fire


- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C *Alarm* is independent of *Fire* given {}
- D All of the above independencies hold
- E There are no independencies

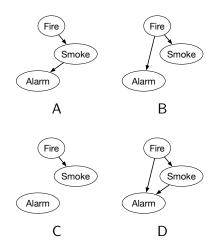
- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C Alarm is independent of Smoke given {}
- D All of the above independencies hold
- E There are no independencies

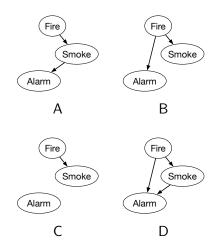


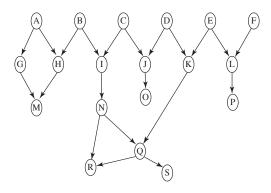
- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C *Alarm* is independent of *Fire* given {}
- D All of the above independencies hold
- E There are no independencies



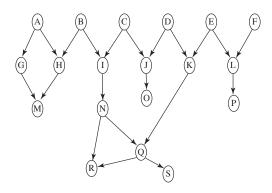
- A *Alarm* is independent of *Smoke* given *Fire*
- B *Alarm* is independent of *Fire* given *Smoke*
- C *Alarm* is independent of *Fire* given {}
- D All of the above independencies hold
- E There are no independencies


Which network best fits a fire alarm that only detects the heat of the fire?


Which network best fits a smoke alarm (that only detects smoke)?

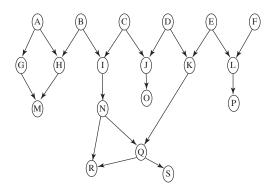

Which network best fits a fire alarm that detects both smoke and the heat of the fire?

Which network best fits a burglary alarm that doesn't detect heat or smoke?

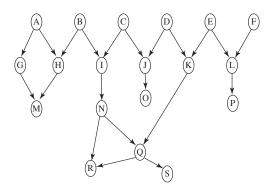


Understanding independence: example

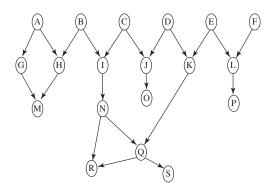
(a) On which given probabilities does P(N) depend?


Understanding independence: example

- (a) On which given probabilities does P(N) depend?
- (b) If you were to observe a value for *B*, which variables' probabilities will change?


Understanding independence: example

- (a) On which given probabilities does P(N) depend?
- (b) If you were to observe a value for *B*, which variables' probabilities will change?
- (c) If you were to observe a value for N, which variables' probabilities will change?



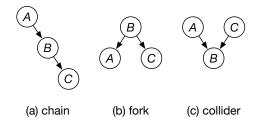
Understanding independence: questions

(d) Suppose you had observed a value for M; if you were to then observe a value for N, which variables' probabilities will change?

Understanding independence: questions

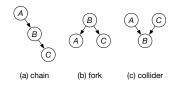
- (d) Suppose you had observed a value for M; if you were to then observe a value for N, which variables' probabilities will change?
- (e) Suppose you had observed B and Q; which variables' probabilities will change when you observe N?

What variables are affected by observing?

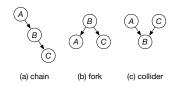

- If you observe variable(s) \overline{Y} , the variables whose posterior probability is different from their prior are:
 - ightharpoonup ancestors of \overline{Y} and
 - their descendants.

What variables are affected by observing?

- If you observe variable(s) \overline{Y} , the variables whose posterior probability is different from their prior are:
 - ightharpoonup ancestors of \overline{Y} and
 - their descendants.
- Intuitively (assuming network ordered so causes are before effects):
 - You do abduction to possible causes and
 - prediction from the causes.

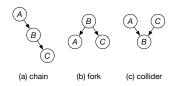


Three types of meetings between arcs

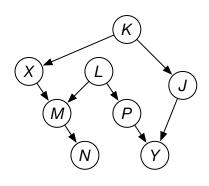


D-separation

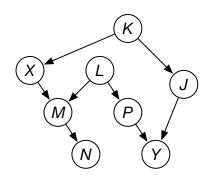
- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs


D-separation

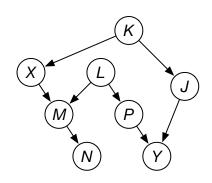
- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs
- X is d-separated from Y given Zs if every path between X and Y is blocked by Zs


D-separation

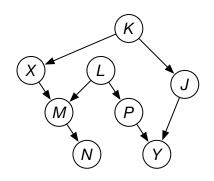
- A path p can follow arrows in either direction.
- Observations Zs block a path p if:
 - (a) p contains a chain $A \rightarrow B \rightarrow C$, and $B \in Zs$
 - (b) p contains a fork $A \leftarrow B \rightarrow C$, and $B \in Zs$
 - (c) p contains a collider $A \rightarrow B \leftarrow C$, and B, and all its descendants, are not in Zs
- X is d-separated from Y given Zs if every path between X and Y is blocked by Zs
- X is independent Y given Zs for all conditional probabilities iff X is d-separated from Y given Zs


Example

• Are X and Y d-separated by $\{\}$?


Example

- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?


Example

- Are X and Y d-separated by {}?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?

Example

- Are X and Y d-separated by $\{\}$?
- Are X and Y d-separated by $\{K\}$?
- Are X and Y d-separated by $\{K, N\}$?
- Are X and Y d-separated by $\{K, N, P\}$?

Markov Random Field

A Markov random field is composed of

- ullet of a set of random variables: $old X = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

Markov Random Field

A Markov random field is composed of

- of a set of random variables: $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

$$P(\mathbf{X} = \mathbf{x}) \propto \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}).$$

Markov Random Field

A Markov random field is composed of

- ullet of a set of random variables: $old X = \{X_1, X_2, \dots, X_n\}$ and
- a set of factors $\{f_1, \ldots, f_m\}$, where a factor is a non-negative function of a subset of the variables.

and defines a joint probability distribution:

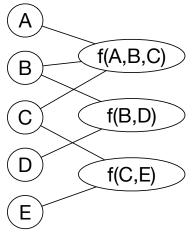
$$P(\mathbf{X} = \mathbf{x}) \propto \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}).$$

$$P(\mathbf{X} = \mathbf{x}) = \frac{1}{Z} \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}).$$

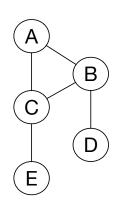
$$Z = \sum_{\mathbf{x}} \prod_{k} f_{k}(\mathbf{X}_{k} = \mathbf{x}_{k}).$$

where $f_k(\mathbf{X}_k)$ is a factor on $\mathbf{X}_k \subseteq \mathbf{X}$, and \mathbf{x}_k is \mathbf{x} projected onto \mathbf{X}_k .

Z is a normalization constant known as the partition function.


 A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.


- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A belief network is a type of Markov random field where

- A factor graph is a bipartite graph, which contains a variable node for each random variable and a factor node for each factor. There is an edge between a variable node and a factor node if the variable appears in the factor.
- A Markov network is a graphical representation of a Markov random field where the nodes are the random variables and there is an arc between any two variables that are in a factor together.
- A belief network is a type of Markov random field where the factors represent conditional probabilities, there is a factor for each variable, and directed graph is acyclic.

Factor graph and Markov network example

Factor Graph

Markov Network

Independence in a Markov Network

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.

Independence in a Markov Network

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.

Independence in a Markov Network

- The Markov blanket of a variable X is the set of variables that are in factors with X.
- A variable is independent of the other variables given its Markov blanket.
- X is connected to Y given \overline{Z} if there is a path from X to Y in the Markov network, which does not contain an element of Z.
- X is separated from Y given \overline{Z} if it is not connected.
- A positive factor is one that does not contain zero values.
- \overline{X} is independent \overline{Y} given \overline{Z} for all positive factors iff \overline{X} is separated from \overline{Y} given \overline{Z}

Canonical Representations

- The parameters of a graphical model are the numbers that define the model.
- A belief network is a canonical representation: given the structure and the distribution, the parameters are uniquely determined.
- A Markov random field is not a canonical representation.
 Many different parameterizations result in the same distribution.