Random variable X is independent of random variable Y given random variable(s) Z if,

 $P(X \mid Y, Z) = P(X \mid Z)$

Random variable X is independent of random variable Y given random variable(s) Z if,

$$P(X \mid Y, Z) = P(X \mid Z)$$

i.e. for all $x_i \in domain(X)$, $y_j \in domain(Y)$, $y_k \in domain(Y)$ and $z_m \in domain(Z)$,

$$P(X = x_i | Y = y_j \land Z = z_m)$$

= $P(X = x_i | Y = y_k \land Z = z_m)$
= $P(X = x_i | Z = z_m).$

That is, knowledge of Y's value doesn't affect the belief in the value of X, given a value of Z.

< 🗆 .

Example

Consider a student writing an exam.

What are reasonable independences among the following?

- Whether the student works hard (W)
- Whether the student is intelligent (1)
- The student's answers on the exam (A)
- The student's mark on an exam (M)

Example domain (diagnostic assistant)

< □

• The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given the position of switch *s*3.

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given the position of switch *s*3.
- Whether light *l*₁ is lit is independent of the position of light switch *s*₂ given

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given the position of switch *s*3.
- Whether light l_1 is lit is independent of the position of light switch s_2 given whether there is power in wire w_0 .

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given the position of switch *s*3.
- Whether light l_1 is lit is independent of the position of light switch s_2 given whether there is power in wire w_0 .
- Every other variable may be independent of whether light *l*₁ is lit given

- The party forming govenment of Canada is dependent or independent of whether light *l*₁ is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light *l*₂ is lit given the position of switch *s*3.
- Whether light l_1 is lit is independent of the position of light switch s_2 given whether there is power in wire w_0 .
- Every other variable may be independent of whether light l_1 is lit given whether there is power in wire w_0 and the status of light l_1 (if it's ok, or if not, how it's broken).

W0 depends only on

< 🗆 .

• W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 (S2_pos), and the status of switch s2 (S2_st).

< 🗆 I

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) =$

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \ldots, X_{i-1})$

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \ldots, X_{i-1})$
- The parents of X_i, parents(X_i), are those predecessors of X_i that render X_i independent of the other predecessors. That is,

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \ldots, X_{i-1})$
- The parents of X_i, parents(X_i), are those predecessors of X_i that render X_i independent of the other predecessors. That is,

 $parents(X_i) \subseteq X_1, \ldots, X_{i-1}$

 $P(X_i \mid parents(X_i)) = P(X_i \mid X_1, \dots, X_{i-1})$

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \ldots, X_{i-1})$

....

• The parents of X_i, parents(X_i), are those predecessors of X_i that render X_i independent of the other predecessors. That is,

$$parents(X_i) \subseteq X_1, \dots, X_{i-1}$$
$$P(X_i \mid parents(X_i)) = P(X_i \mid X_1, \dots, X_{i-1})$$

• So
$$P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \ldots, X_{i-1})$
- The parents of X_i, parents(X_i), are those predecessors of X_i that render X_i independent of the other predecessors. That is,

$$\mathit{parents}(X_i) \subseteq X_1, \dots, X_{i-1}$$

$$P(X_i \mid parents(X_i)) = P(X_i \mid X_1, \dots, X_{i-1})$$

- So $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$
- A belief network is a graph: the nodes are random variables; there is an arc from the parents of each node into that node.

< 🗆)

Student Writing an Exam Example

Give a belief network for the variables in order:

- WorksHard: Whether the student works hard
- Intelligent: Whether the student is intelligent
- Answers: The student's answers on the exam
- *Mark*: The student's mark on an exam

Student Writing an Exam Example

Give a belief network for the variables in order:

- WorksHard: Whether the student works hard
- Intelligent: Whether the student is intelligent
- Answers: The student's answers on the exam
- Mark: The student's mark on an exam

< 🗆 I

Student Writing an Exam Example

Give a belief network for the variables in order:

- WorksHard: Whether the student works hard
- Intelligent: Whether the student is intelligent
- Answers: The student's answers on the exam
- Mark: The student's mark on an exam

What if the variables were in the opposite order?

< □

Example: fire alarm belief network

Variables:

- Fire: there is a fire in the building
- Tampering: someone has been tampering with the fire alarm
- Smoke: what appears to be smoke is coming from a window
- Alarm: the fire alarm goes off
- Leaving: people are leaving the building *en masse*.
- Report: told people are leaving the building *en masse*.

Example: fire alarm belief network

Variables:

- Fire: there is a fire in the building
- Tampering: someone has been tampering with the fire alarm
- Smoke: what appears to be smoke is coming from a window
- Alarm: the fire alarm goes off
- Leaving: people are leaving the building en masse.
- Report: told people are leaving the building *en masse*.

AIPython.org: bn_report in probGraphicalModels.py

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probabilities, one for each variable given its parents (including prior probabilities for nodes with no parents).

Task Domain: Electrical Environment

10 / 15

Example belief network

< 🗆 I

The belief network also specifies:

• The domain of the variables: W_0, \ldots, W_6 have domain {*live, dead*} $S_{1_pos}, S_{2_pos}, and S_{3_pos}$ have domain {*up, down*} S_{1_st} has {*ok, upside_down, short, intermittent, broken*}.

The belief network also specifies:

• The domain of the variables: W_0, \ldots, W_6 have domain {*live, dead*} $S_{1_pos}, S_{2_pos}, and S_{3_pos}$ have domain {*up, down*} S_{1_st} has {*ok, upside_down, short, intermittent, broken*}.

• Conditional probabilities, including:

$$P(W_1 = live | s_1_pos = up \land S_1_st = ok \land W_3 = live)$$

 $P(W_1 = live | s_1_pos = up \land S_1_st = ok \land W_3 = dead)$
 $P(S_1_pos = up)$
 $P(S_1_st = upside_down)$

< □

• A belief network is a directed acyclic graph (DAG) where nodes are random variables.

- A belief network is a directed acyclic graph (DAG) where nodes are random variables.
- The parents of a node *N* are those variables on which *N* directly depends.

- A belief network is a directed acyclic graph (DAG) where nodes are random variables.
- The parents of a node *N* are those variables on which *N* directly depends.
- A belief network is automatically acyclic by construction.

- A belief network is a directed acyclic graph (DAG) where nodes are random variables.
- The parents of a node *N* are those variables on which *N* directly depends.
- A belief network is automatically acyclic by construction.
- A belief network is a graphical representation of dependence and independence:
 - A variable is independent of its non-descendants given its parents.

• What are the relevant variables?

- What are the relevant variables?
 - What will you observe?

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?
- What values should these variables take?

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?
- What values should these variables take?
- What is the relationship between the variables? This is in terms of a directed graph, representing conditional dependence.

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?
- What values should these variables take?
- What is the relationship between the variables? This is in terms of a directed graph, representing conditional dependence.
- How does the value of each variable depend on its parents? This is expressed in terms of the conditional probabilities.

< □