It is remarkable that a science which began with the consideration of games of chance should become the most important object of human knowledge . . . The most important questions of life are, for the most part, really only problems of probability . . .

The theory of probabilities is at bottom nothing but common sense reduced to calculus.

– Pierre Simon de Laplace [1812]
At the end of the class you should be able to:

- justify the use and semantics of probability
- know how to compute marginals and apply Bayes’ theorem
- identify conditional independence
- build a belief network for a domain
Agents don’t have complete knowledge about the world.
Agents need to make (informed) decisions given their uncertainty.
It isn’t enough to assume what the world is like.
Example: wearing a seat belt.
An agent needs to reason about its uncertainty.
Why Probability?

- There is lots of uncertainty about the world, but agents still need to act.
- Predictions are needed to decide what to do:
 - definitive predictions: you will (not) be run over tomorrow
 - point probabilities: probability you will be run over tomorrow is 0.002
 - probability ranges: you will be run over with probability in range [0.001,0.34]
- Acting is gambling: agents who don’t use probabilities will lose to those who do — Dutch books.
- Probabilities can be learned from data. Bayes’ rule specifies how to combine data and prior knowledge.
Numerical Measures of Belief

- Belief in proposition, \(f \), can be measured in terms of a number between 0 and 1 — this is the probability of \(f \).
 - The probability \(f \) is 0 means that \(f \) is believed to be definitely false.
 - The probability \(f \) is 1 means that \(f \) is believed to be definitely true.
- Using 0 and 1 is purely a convention.
- \(f \) has a probability between 0 and 1, means the agent is ignorant of its truth value.
- Probability is a measure of an agent’s ignorance.
- Probability is not a measure of degree of truth.
Possible World Semantics

- Ω is a (possibly infinite) set of possible worlds.
- A **random variable** is a function of possible worlds.
- A random variable with a countable (or finite) range is a **discrete** random variable.
- A variable with range $\{true, false\}$ is a **Boolean** random variable.
- A variable with range the real numbers is a **continuous** random variable.
- $\omega \models X = v$ means variable X has value v in world ω.
- $\omega \models X > v$ means variable X is greater than v in world ω.
- Logical connectives have their standard meaning:
 - $\omega \models \alpha \land \beta$ if $\omega \models \alpha$ and $\omega \models \beta$
 - $\omega \models \alpha \lor \beta$ if $\omega \models \alpha$ or $\omega \models \beta$
 - $\omega \models \neg \alpha$ if $\omega \not\models \alpha$

(Sometimes the range of a random variable is called it’s **domain** – it is the domain of a function on random variables.)
Semantics of Probability

- Probability defines a measure on sets of possible worlds. (Not all sets have measures; just those than can be described.)

- A probability measure is a function μ from sets of worlds into the non-negative real numbers such that:

 $\mu(\Omega) = 1$

 $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$ if $S_1 \cap S_2 = \emptyset$.

 Extended to countable unions (σ-additivity):

 $$\mu(\bigcup \limits_{i} S_i) = \sum \limits_{i} \mu(S_i) \text{ if } S_i \cap S_j = \emptyset \text{ for } i \neq j$$

- $P(\alpha) = \mu(\{\omega \mid \omega \models \alpha\})$.

© 2023 D. L. Poole and A. K. Mackworth
Suppose the measure of each singleton world is 0.1.

- What is the probability of circle?
- What is the probability of star?
- What is the probability of orange?
- What is the probability of orange and star?
- What is the probability of orange and circle?

Note that $P(\alpha \land \beta)$ is not a function of $P(\alpha)$ and $P(\beta)$.

The expected value of numerical random variable X with respect to probability P is

$$\mathbb{E}_P(X) = \sum_{v \in \text{domain}(X)} v \times P(X = v)$$

when the domain is X is finite or countable.

When the domain is continuous, the sum becomes an integral.

If α is a proposition, treating true as 1 and false as 0:

$$\mathbb{E}_P(\alpha) = P(\alpha)$$
Probabilistic conditioning specifies how to revise beliefs based on new information.

An agent builds a probabilistic model taking all background information into account. This gives the prior probability.

All other information must be conditioned on.

If evidence e is the all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.
Semantics of Conditional Probability

- Evidence e rules out possible worlds incompatible with e.
- Evidence e induces a new measure, μ_e, over possible worlds:

$$\mu_e(S) = \begin{cases}
 c \times \mu(S) & \text{if } \omega \models e \text{ for all } \omega \in S \\
 0 & \text{if } \omega \not\models e \text{ for all } \omega \in S
\end{cases}$$

To derive c:

$$\mu_e(\Omega) = \mu_e(\{\omega \mid \omega \models e\}) + \mu_e(\{\omega \mid \omega \not\models e\})$$

$$= c \times P(e)$$

therefore $c = \frac{1}{P(e)}$.

- The conditional probability of formula h given evidence e is

$$P(h \mid e) = \mu_e(\{\omega : \omega \models h\})$$

$$= \frac{P(h \land e)}{P(e)}$$
Conditioning

Possible Worlds:

- $P(\text{Shape} = \text{star}) = 0.3$
- $P(\text{Shape} = \text{circle}) = 0.5$

Observe Color = orange:

- $P(\text{Shape} = \text{star} \mid \text{Color} = \text{orange}) = 0.5$
- $P(\text{Shape} = \text{circle} \mid \text{Color} = \text{orange}) = 0.25$
Chain Rule: probability of conjunctions

\[P(h \mid e) = \frac{P(h \land e)}{P(e)} \]

Therefore

\[P(h \land e) = P(h \mid e) \ast P(e) \]
Chain Rule

Semantics of conditioning gives: \(P(h \land e) = P(h \mid e) \ast P(e) \)

\[
P(f_n \land f_{n-1} \land \ldots \land f_1)
\]

\[
= P(f_n \mid f_{n-1} \land \ldots \land f_1) \ast
P(f_{n-1} \land \ldots \land f_1)
\]

\[
= P(f_n \mid f_{n-1} \land \ldots \land f_1) \ast
P(f_{n-1} \mid f_{n-2} \land \ldots \land f_1) \ast
P(f_{n-2} \land \ldots \land f_1)
\]

\[
= P(f_n \mid f_{n-1} \land \ldots \land f_1) \ast
P(f_{n-1} \mid f_{n-2} \land \ldots \land f_1) \ast
\ldots \ast
P(f_3 \mid f_2 \land f_1) \ast P(f_2 \mid f_1) \ast P(f_1)
\]

\[
= \prod_{i=1}^{n} P(f_i \mid f_1 \land \ldots \land f_{i-1})
\]
The chain rule and commutativity of conjunction \((h \land e)\) gives us:

\[
P(h \land e) = P(h \mid e) \ast P(e)
\]
\[
= P(e \mid h) \ast P(h).
\]

If \(P(e) \neq 0\), divide the right hand sides by \(P(e)\):

\[
P(h \mid e) = \frac{P(e \mid h) \ast P(h)}{P(e)}.
\]

This is Bayes’ theorem.
Why is Bayes’ theorem interesting?

- Often you have causal knowledge:

 \[P(\text{symptom} \mid \text{disease}) \]

 \[P(\text{light is off} \mid \text{status of switches and switch positions}) \]

 \[P(\text{alarm} \mid \text{fire}) \]

 \[P(\text{image looks like } \text{a tree is in front of a car} \mid \text{a tree is in front of a car}) \]

- and want to do evidential reasoning:

 \[P(\text{disease} \mid \text{symptom}) \]

 \[P(\text{status of switches} \mid \text{light is off and switch positions}) \]

 \[P(\text{fire} \mid \text{alarm}) \]

 \[P(\text{a tree is in front of a car} \mid \text{image looks like } \text{a tree is in front of a car}) \]