Neural Models for Sequences

@ Fully-connected networks, perhaps including convolutional
layers, can handle fixed-size images and sequences.

@ What about variable-length sequences?

@ Sequences arise in natural language processing, biology, and
any domain involving time.
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Neural Language Models

@ A corpus is the text used for training. The corpus could be,
for example, a novel, a set of news articles, all of Wikipedia,
or a subset of the text on the web.

@ A token is a sequence of characters that are grouped together,
such as the characters between blanks or punctuation. The
process of splitting a corpus into tokens is called tokenization.

@ The vocabulary, the set of words that will be considered,
typically including names, common phrases, slang,
punctuation, and markers for the beginning and end: (start)
and (stop).

@ Sometimes there is processing to group words into tokens, or
to split words into tokens (such as the word “eating”
becoming the tokens “eat” and "ing").

@ In a character-level model, the vocabulary could be the set of
Unicode characters that appear in the corpus.
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Word Embeddings

Consider a model takes a single word and makes a prediction about
what word appears near (e.g., following) it:

output prediction (7 )
softmax
Dense v (decoder)

word embedding (&)

Dense u (encoder)

1-hot word encoding (=)

input words

aardvark

The vector of values in the hidden layer for the input word /,
namely [u[i,0], u[i, 1], u[i,2],...], is its word embedding.
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Simple Word Embedding Example

The text “The history of Al is a history of fantasies, possibilities,
demonstrations, and promise..." (ignore punctuation, with (start)
as the start of a sentence) becomes the training data:

Input  Target
(start) the

the history
history of

of ai

ai is

is a

a history
history of

of fantasies
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It usually works better to make predictions based on multiple
surrounding words, rather than just one. The following methods
use the k words before and after as a context:

@ In the continuous bag of words (CBOW) model, each word in
the context contributes n/(2 x k) in the one-hot encoding,
where n is the number of times the word appears in the
context.

@ In the Skip-gram model, the neural network model is used for
each (wjyj, w;), for j € {—k,...,—1,1,... k}, and the
prediction of w; is proportional to the product of each of the
predictions. Thus, this assumes that each context word gives
an independent prediction of word w;.
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@ The embeddings resulting from these models can be added or
subtracted point-wise, for example

Paris — France + Japan =~ Tokyo

where value after “~" is the mode of the prediction.

e Mikolov et al [2013] trained them on a corpus of 1.6 billion
words, with up to 600 hidden units.

@ Some other relationships found:

scientist — Einstein + Messi ~ midfielder
scientist — Einstein + Mozart = violinist
scientist — Einstein + Picasso ~ painter
sushi — Japan 4+ Germany = bratwurst
sushi — Japan + USA = pizza

sushi — Japan + France = tapas.

@ There was about 60% accuracy picking the mode compared to
what the authors considered to be the correct answer.
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Matched Recurrent Neural Network

A recurrent neural network with matched input—output:

é&&

o takes sequence x(9, x(1), x(?) . and outputs

y© (@) @) where y() onIy depends on xU) for j < .

o h(t) represents a memory or belief state: the information
remembered from the previous times.
@ A recurrent neural network represents

» belief state transition function: x(9), p(t=1) — p(t)
» command function: A(t) — p(t)
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Basic Matched Recurrent Neural Network

e belief state transition function: x(), A(t=1) — p(t),
The ith component of vector h(t) is

WO = | Bli]+ > wii, ]+ hE D[]+ i, k] = xO[k]
j k

for nonlinear activation function ¢, bias weight vector b,
weight matrices w and wv.
Weight vector and matrices do not depend on time, t.

e command function: A(t) — p(B),
If the mth component of () is Boolean:

YO [m] = sigmoid(b'[m] + Z v[m, i] = hO[i])
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Single output recurrent neural network

A recurrent neural network with single output after time T

v
! — {oLL b
LS w w woos TS w
h i
u u u

o takes sequence x(9, x(1) x(?) | and outputs .

@ A recurrent neural network represents

» belief state transition function: x(), p(t=1) — p(t)
» command function: A(T) = §
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Encoder—decoder recurrent neural network

An encoder—decoder recurrent neural network does
sequence-to-sequence mapping:

0 686"

@ c is a vector representing the context for the decoder.

@ The decoder is a generative language model that takes the
context and emits an output sequence.

@ The decoder is like the matched RNN, but with ¢ as an input
for each hidden value and each output value.
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Long short-term memory (LSTM)

@ In a basic RNN, the gradients either exponentially vanish and
explode.

@ A long short-term memory (LSTM) network is a special kind
of recurrent neural network designed so that the memory is
maintained unless replaced by new information.

@ Instead of learning a function from h(t=1) o h(t), it learns the
change in h, written Ah(), so that A(t) = p(t=1) 4 AR(t),

e The value of h(!) is h(® + 3~ ApU).

@ The error in h(Y) is passed to all predecessors, and is not
vanishing exponentially as it does in a traditional RNN.
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