This lecture covers

- Gradient descent
- Backpropagation
- Improved optimization: momentum, RMS-Prop, Adam
- Initialization
- Pragmatics of training neural networks
- Hyperparameter tuning

- If the domains are continuous, Gradient descent movies each each variable downhill; proportional to the gradient of the heuristic function in that direction.
 The value of variable X_i goes from v_i to v_i η ∂h/∂X_i.
 η is the step size.
- Neural networks do gradient descent with many parameters (variables) to minimize an error on a dataset. Some large language models have over 10¹² parameters.

< 🗆 .

Two properties of differentiation are used in backpropagation:

• Linear rule: the derivative of a linear function, aw + b, is given by:

$$\frac{\partial}{\partial w}(aw+b)=a$$

• Chain rule: if g is a function of w and function f, which does not depend on w, is applied to g(w), then

$$\frac{\partial}{\partial w}f(g(w))=f'(g(w))*\frac{\partial}{\partial w}g(w)$$

where f' is the derivative of f.

Use of chain rule

A network represents $f(e) = f_n(f_{n-1}(\dots f_2(f_1(x_e))))$, where example *e* has features x_e . Suppose $v_i = f_i(v_{i-1})$ and $v_0 = x_e$. Consider weight *w* used in the definition of f_i :

$$\begin{aligned} \frac{\partial}{\partial w} \operatorname{error}(f(e)) \\ &= \operatorname{error}'(v_n) * \frac{\partial}{\partial w} f_n(v_{n-1}) \\ &= \operatorname{error}'(v_n) * \frac{\partial}{\partial w} f_n(f_{n-1}(v_{n-2})) \\ &= \operatorname{error}'(v_n) * f'_n(v_{n-1}) * \frac{\partial}{\partial w} (f_{n-1}(v_{n-2})) \\ &= \operatorname{error}'(v_n) * f'_n(v_{n-1}) * f'_{n-1}(v_{n-2}) * \cdots * \frac{\partial}{\partial w} (f_j(v_{j-1})) \end{aligned}$$

where f'_i is the derivative of f_i with respect to its inputs.

Image: Ima

- Backpropagation implements (stochastic) gradient descent for all weights.
- Two passes:
 - Prediction: given inputs compute outputs of each layer
 - Back propagate: Going backwards,

$$error'(v_n) * \prod_{i=0}^k f'_{n-i}(v_{n-i-1})$$

for k starting from 0 are computed and passed to the lower layers. Weights in each layer are updated.

functions is the list of functions that compose the neural network.

1: repeat

- 2: *batch* := random sample of *batch_size* examples
- 3: for each example *e* in *batch* do
- 4: for each input unit *i* do $values[i] := X_i(e)$
- 5: for each *fun* in *functions* from lowest to highest do
- 6: values := fun.output(values)
- 7: **for each** output unit *j* **do** $error[j] := \phi_o(values[j]) - Ys[j]$
- 8: for each *fun* in *functions* from highest to lowest do
- 9: error := fun.Backprop(error)
- 10: for each fun in functions that contains weights do11: fun.update()
- 12: until termination

Dense linear function

1:	class Dense (n_i, n_o) \triangleright n_i is $\#$ inputs, n_o is $\#$ outputs
2:	for each $0 \le i \le n_i$ and each $0 \le j < n_o$ do
3:	d[i,j] := 0; w[i,j] := a random value
4:	def $output(in)$ \triangleright in is array with length n_i
5:	for each j do $out[j] := w[n_i, j] + \sum_i in[i] * w[i, j]$
6:	return out
7:	def $Backprop(error)$ \triangleright <i>error</i> is array with length n_o
8:	for each i, j do $d[i, j] := d[i, j] + in[i] * error[j]$
9:	for each <i>i</i> do <i>ierror</i> [<i>i</i>] := $\sum_{j} w[i, j] * error[j]$
10:	return ierror
11:	def $update()$ \triangleright update weights. η is learning rate.
12:	for each i, j do
13:	$w[i,j] := w[i,j] - \eta/batch_size * d[i,j]$
14:	d[i,j] := 0

Problems for (stochastic) gradient descent

Error as a function of parameters x and y:

Want different step sizes for x and y. With many parameters, treat each parameter independently.

8/15

Momentum

- The momentum for a parameter acts like a velocity of the step size. The standard stochastic gradient descent update acts like an acceleration.
- For updates are in the same direction, the step size increases.
- For updates are in opposite direction, the step size decreases.
- For a dense layer, the update becomes:
 - 1: **def** update() ▷ update all weights
 - 2: for each *i*, *j* do
 - 3: $v[i,j] := \alpha * v[i,j] \eta/batch_size * d[i,j]$

4:
$$w[i, j] := w[i, j] + v[i, j]$$

5:
$$d[i,j] := 0.$$

Hyperparameter α , with $0 \le \alpha < 1$, specifies how much of the momentum should be used.

- The SDG update method is equivalent to this with $\alpha = 0$.
- What happens in the canyon?

9/15

RMS-Prop

- In RMS-Prop the magnitude of the change in a weight depends on how its gradient compares to its historic value.
- It maintains r, a rolling average of the square of the gradient.
- For a dense layer, the update becomes:
 - 1: **def** *update*() ▷ update weights
 - 2: for each *i*, *j* do
 - 3: $g := d[i,j]/batch_size$
 - 4: $r[i,j] := \rho * r[i,j] + (1 \rho) * g^2$

5:
$$w[i,j] := w[i,j] - \frac{\eta * g}{\sqrt{r[i,j] + \epsilon}}$$

6: $d[i,j] := 0$.

- $\epsilon~(\approx 10^{-7})$ is used to ensure numerical stability.
- When $r[i,j] \approx g^2 \gg \epsilon$, the ratio $g/\sqrt{r[i,j] + \epsilon}$ is approximately 1 or -1, depending on the sign of g.
- When $g^2 \ll r[i,j]$, the step size is smaller than η .

Adam

- Adam, for "adaptive moments", uses both momentum and the square of the gradient.
- It corrects to account for the parameters being initialized to 0.
 - 1: **def** update() \triangleright update weights t := t + 1 \triangleright t is initially 0 2: for each *i*, *j* do 3. $g := d[i, j]/batch_size$ 4: $s[i, j] := \beta_1 * s[i, j] + (1 - \beta_1) * g$ 5: $r[i, j] := \beta_2 * r[i, j] + (1 - \beta_2) * g^2$ 6: $w[i,j] := w[i,j] - \frac{\eta * s[i,j]/(1-\beta_1^t)}{\sqrt{r[i,j]/(1-\beta_2^t)} + \epsilon}$ 7: d[i, i] := 0.8:
- s acts as momentum (initially 0)
- *r* is the rolling average of the square (initially 0).
- What happens at first step (when t becomes 1)?

- Real-valued variables are normalized by subtracting the mean, and dividing by the standard deviation.
- In a one-hot encoding, categorical input variable X with domain $\{v_1, \ldots, v_k\}$ is represented as k input indicator variables, X_1, \ldots, X_k . An input example with $X = v_j$ is represented with $X_j = 1$ and every other $X_{j'} = 0$.
- What happens if the weights in the hidden layers are all set to the same value?
- For the output units, non-bias weights can be set to zero and the bias weights to the mean for regression or inverse-sigmoid of the empirical probability for classification. (Why?)

Pragmatics of Training Neural Networks

- Make sure it is learning something: The error on the training set should beat a naive baseline corresponding to the loss being evaluated.
- If the performance on the training set is poor, change the model.

(Poor performance on the training set indicates under-fitting.)

- Test the error on the validation set. If the validation error does not improve as the algorithm proceeds, it means the learning is not generalizing, and it is fitting to noise. (Poor performance on the validation set indicates overfitting.) In this case you should simplify the model.
- Then carry out hyperparameter tuning.
- If the performance isn't adequate, try to collect more data!
- Data augmentation can be a way to get more data, e.g., adding noise, scaling, translating or rotating images. (What can go wrong?)

13/15

The hyperparameters that can be tuned include:

- the algorithm (a decision tree or gradient-boosted trees may be more appropriate than a neural network)
- number of layers
- width of each layer
- number of epochs, to allow for early stopping
- learning rate
- batch size
- L1 and L2 regularization parameters.

- dropout involves randomly dropping some units during training.
- Ignoring a unit is equivalent to temporarily setting its output to zero.
- Dropout is controlled by a parameter *rate*, which specifies the proportion of values that are zeroed.
- During evaluation, dropout is not used.
- To account for missing units, the prediction needs to be scaled by 1/(1 rate).