
Optimization and Generalization

This lecture covers

Gradient descent

Backpropagation

Improved optimization: momentum, RMS-Prop, Adam

Initialization

Pragmatics of training neural networks

Hyperparameter tuning

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 1 / 15

Gradient Descent

If the domains are continuous, Gradient descent movies each
each variable downhill; proportional to the gradient of the
heuristic function in that direction.
The value of variable Xi goes from vi to

vi − η ∂h
∂Xi

.
η is the step size.

Neural networks do gradient descent with many parameters
(variables) to minimize an error on a dataset. Some large
language models have over 1012 parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 2 / 15

Gradient Descent

If the domains are continuous, Gradient descent movies each
each variable downhill; proportional to the gradient of the
heuristic function in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networks do gradient descent with many parameters
(variables) to minimize an error on a dataset. Some large
language models have over 1012 parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 2 / 15

Gradient Descent

If the domains are continuous, Gradient descent movies each
each variable downhill; proportional to the gradient of the
heuristic function in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networks do gradient descent with many parameters
(variables) to minimize an error on a dataset. Some large
language models have over 1012 parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 2 / 15

Differentiation

Two properties of differentiation are used in backpropagation:

Linear rule: the derivative of a linear function, aw + b, is
given by:

∂

∂w
(aw + b) = a

Chain rule: if g is a function of w and function f , which does
not depend on w , is applied to g(w), then

∂

∂w
f (g(w)) = f ′(g(w)) ∗ ∂

∂w
g(w)

where f ′ is the derivative of f .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 3 / 15

Use of chain rule

A network represents f (e) = fn(fn−1(. . . f2(f1(xe)))), where
example e has features xe . Suppose vi = fi (vi−1) and v0 = xe .
Consider weight w used in the definition of fj :

∂

∂w
error(f (e))

= error ′(vn) ∗
∂

∂w
fn(vn−1)

= error ′(vn) ∗
∂

∂w
fn(fn−1(vn−2))

= error ′(vn) ∗ f ′n(vn−1) ∗
∂

∂w
(fn−1(vn−2))

= error ′(vn) ∗ f ′n(vn−1) ∗ f ′n−1(vn−2) ∗ · · · ∗
∂

∂w
(fj(vj−1))

where f ′i is the derivative of fi with respect to its inputs.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 4 / 15

Backpropagation

Backpropagation implements (stochastic) gradient descent for
all weights.

Two passes:
▶ Prediction: given inputs compute outputs of each layer
▶ Back propagate: Going backwards,

error ′(vn) ∗
k∏

i=0

f ′n−i (vn−i−1)

for k starting from 0 are computed and passed to the lower
layers. Weights in each layer are updated.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 5 / 15

Neural-network learner

functions is the list of functions that compose the neural network.

1: repeat
2: batch := random sample of batch size examples
3: for each example e in batch do
4: for each input unit i do values[i] := Xi (e)

5: for each fun in functions from lowest to highest do
6: values := fun.output(values)

7: for each output unit j do
error [j] := ϕo(values[j])− Ys[j]

8: for each fun in functions from highest to lowest do
9: error := fun.Backprop(error)

10: for each fun in functions that contains weights do
11: fun.update()

12: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 6 / 15

Neural-network learner

functions is the list of functions that compose the neural network.

1: repeat
2: batch := random sample of batch size examples
3: for each example e in batch do
4: for each input unit i do values[i] := Xi (e)

5: for each fun in functions from lowest to highest do
6: values := fun.output(values)

7: for each output unit j do
error [j] := ϕo(values[j])− Ys[j]

8: for each fun in functions from highest to lowest do
9: error := fun.Backprop(error)

10: for each fun in functions that contains weights do
11: fun.update()

12: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 6 / 15

Neural-network learner

functions is the list of functions that compose the neural network.

1: repeat
2: batch := random sample of batch size examples
3: for each example e in batch do
4: for each input unit i do values[i] := Xi (e)

5: for each fun in functions from lowest to highest do
6: values := fun.output(values)

7: for each output unit j do
error [j] := ϕo(values[j])− Ys[j]

8: for each fun in functions from highest to lowest do
9: error := fun.Backprop(error)

10: for each fun in functions that contains weights do
11: fun.update()

12: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 6 / 15

Neural-network learner

functions is the list of functions that compose the neural network.

1: repeat
2: batch := random sample of batch size examples
3: for each example e in batch do
4: for each input unit i do values[i] := Xi (e)

5: for each fun in functions from lowest to highest do
6: values := fun.output(values)

7: for each output unit j do
error [j] := ϕo(values[j])− Ys[j]

8: for each fun in functions from highest to lowest do
9: error := fun.Backprop(error)

10: for each fun in functions that contains weights do
11: fun.update()

12: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 6 / 15

Dense linear function

1: class Dense(ni , no) ▷ ni is # inputs, no is #outputs
2: for each 0 ≤ i ≤ ni and each 0 ≤ j < no do
3: d [i , j] := 0; w [i , j] := a random value

4: def output(in) ▷ in is array with length ni
5: for each j do out[j] := w [ni , j] +

∑
i in[i] ∗ w [i , j]

6: return out
7: def Backprop(error) ▷ error is array with length no
8: for each i , j do d [i , j] := d [i , j] + in[i] ∗ error [j]
9: for each i do ierror [i] :=

∑
j w [i , j] ∗ error [j]

10: return ierror
11: def update() ▷ update weights. η is learning rate.
12: for each i , j do
13: w [i , j] := w [i , j]− η/batch size ∗ d [i , j]
14: d [i , j] := 0

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 7 / 15

Problems for (stochastic) gradient descent

Error as a function of parameters x and y :

x

2
1

0
1

2

y

2
1

0
1

2

er
ro

r

0.2

0.4

0.6

0.8

1.0

Want different step sizes for x and y .
With many parameters, treat each parameter independently.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 8 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size

increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size

decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with

α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

Momentum

The momentum for a parameter acts like a velocity of the
step size. The standard stochastic gradient descent update
acts like an acceleration.

For updates are in the same direction, the step size increases.

For updates are in opposite direction, the step size decreases.

For a dense layer, the update becomes:

1: def update() ▷ update all weights
2: for each i , j do
3: v [i , j] := α ∗ v [i , j]− η/batch size ∗ d [i , j]
4: w [i , j] := w [i , j] + v [i , j]
5: d [i , j] := 0.

Hyperparameter α, with 0 ≤ α < 1, specifies how much of the
momentum should be used.

The SDG update method is equivalent to this with α = 0.

What happens in the canyon?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 9 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√
r [i , j] + ϵ is

approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√
r [i , j] + ϵ is

approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√
r [i , j] + ϵ is

approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√

r [i , j] + ϵ is

approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√

r [i , j] + ϵ is
approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j],

the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

RMS-Prop

In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.

It maintains r , a rolling average of the square of the gradient.

For a dense layer, the update becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√

r [i , j] + ϵ is
approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

Adam

Adam, for “adaptive moments”, uses both momentum and
the square of the gradient.

It corrects to account for the parameters being initialized to 0.

1: def update() ▷ update weights
2: t := t + 1 ▷ t is initially 0
3: for each i , j do
4: g := d [i , j]/batch size
5: s[i , j] := β1 ∗ s[i , j] + (1− β1) ∗ g
6: r [i , j] := β2 ∗ r [i , j] + (1− β2) ∗ g2

7: w [i , j] := w [i , j]− η ∗ s[i , j]/(1− βt
1)√

r [i , j]/(1− βt
2) + ϵ

8: d [i , j] := 0.

s acts as momentum (initially 0)

r is the rolling average of the square (initially 0).

What happens at first step (when t becomes 1)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 11 / 15

Adam

Adam, for “adaptive moments”, uses both momentum and
the square of the gradient.

It corrects to account for the parameters being initialized to 0.

1: def update() ▷ update weights
2: t := t + 1 ▷ t is initially 0
3: for each i , j do
4: g := d [i , j]/batch size
5: s[i , j] := β1 ∗ s[i , j] + (1− β1) ∗ g
6: r [i , j] := β2 ∗ r [i , j] + (1− β2) ∗ g2

7: w [i , j] := w [i , j]− η ∗ s[i , j]/(1− βt
1)√

r [i , j]/(1− βt
2) + ϵ

8: d [i , j] := 0.

s acts as momentum (initially 0)

r is the rolling average of the square (initially 0).

What happens at first step (when t becomes 1)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 11 / 15

Adam

Adam, for “adaptive moments”, uses both momentum and
the square of the gradient.

It corrects to account for the parameters being initialized to 0.

1: def update() ▷ update weights
2: t := t + 1 ▷ t is initially 0
3: for each i , j do
4: g := d [i , j]/batch size
5: s[i , j] := β1 ∗ s[i , j] + (1− β1) ∗ g
6: r [i , j] := β2 ∗ r [i , j] + (1− β2) ∗ g2

7: w [i , j] := w [i , j]− η ∗ s[i , j]/(1− βt
1)√

r [i , j]/(1− βt
2) + ϵ

8: d [i , j] := 0.

s acts as momentum (initially 0)

r is the rolling average of the square (initially 0).

What happens at first step (when t becomes 1)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 11 / 15

Adam

Adam, for “adaptive moments”, uses both momentum and
the square of the gradient.

It corrects to account for the parameters being initialized to 0.

1: def update() ▷ update weights
2: t := t + 1 ▷ t is initially 0
3: for each i , j do
4: g := d [i , j]/batch size
5: s[i , j] := β1 ∗ s[i , j] + (1− β1) ∗ g
6: r [i , j] := β2 ∗ r [i , j] + (1− β2) ∗ g2

7: w [i , j] := w [i , j]− η ∗ s[i , j]/(1− βt
1)√

r [i , j]/(1− βt
2) + ϵ

8: d [i , j] := 0.

s acts as momentum (initially 0)

r is the rolling average of the square (initially 0).

What happens at first step (when t becomes 1)?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 11 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.

(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates

under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.

(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates

overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)

In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should

simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.

If the performance on the training set is poor, change the
model.
(Poor performance on the training set indicates under-fitting.)

Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

If the performance isn’t adequate, try to collect more data!

Data augmentation can be a way to get more data, e.g.,
adding noise, scaling, translating or rotating images. (What
can go wrong?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)

number of layers

width of each layer

number of epochs, to allow for early stopping

learning rate

batch size

L1 and L2 regularization parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by 1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by 1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by 1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by 1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by

1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

Dropout

dropout involves randomly dropping some units during
training.

Ignoring a unit is equivalent to temporarily setting its output
to zero.

Dropout is controlled by a parameter rate, which specifies the
proportion of values that are zeroed.

During evaluation, dropout is not used.

To account for missing units, the prediction needs to be scaled
by 1/(1− rate).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 15 / 15

