Composite Models

Many methods can be see as:

decision tree
logistic function

;) of
linear function

\

decision trees

logistic functions

linear functions

kernel functions

lower dimensional subspace

E.g., neural networks, regression trees, random forest, ...

Some combinations don't help.

© 2023 D. L. Poole and A. K. Mackworth

Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model

\A/:f(Wo—i-Wl*Fl*---Wm*Fm)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
)A/:f(wo—i—wl*Fl*...Wm*Fm)

Where the the features F; come from?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
)A/:f(wo—i—wl*Fl*...Wm*Fm)

Where the the features F; come from?

@ Input features.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
\A’:f(WO—I—Wl*Fl*...Wm*Fm)

Where the the features F; come from?
@ Input features.

@ Boolean functions (e.g., using “and”, “or”, “equals’, “greater
than") of input features

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
\A’:f(WO—I—Wl*Fl*...Wm*Fm)

Where the the features F; come from?
@ Input features.

@ Boolean functions (e.g., using “and”, “or”, “equals’, “greater
than") of input features — gradient boosted trees

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
\A’:f(WO—I—Wl*Fl*...Wm*Fm)

Where the the features F; come from?
@ Input features.

@ Boolean functions (e.g., using “and”, “or”, “equals’, “greater
than") of input features — gradient boosted trees

@ Piecewise linear functions of input features

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Linear Models

Consider a generalized linear model
\A’:f(WO—I—Wl*Fl*...Wm*Fm)

Where the the features F; come from?
@ Input features.

@ Boolean functions (e.g., using “and”, “or”, “equals’, “greater
than") of input features — gradient boosted trees

@ Piecewise linear functions of input features — neural
networks (with ReLU)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.

© 2023 D. L. Poole and A. K. Mackworth ificial Intelligence 3e, Lecture 7.5

Boosting

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

@ There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

@ There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

@ Each learner is trained to fit the examples that the previous
learners did not fit well.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

@ There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

@ Each learner is trained to fit the examples that the previous
learners did not fit well.

@ The final prediction uses a mix (e.g., sum, weighted mean, or
mode) of the predictions of each learner.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

@ There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

@ Each learner is trained to fit the examples that the previous
learners did not fit well.

@ The final prediction uses a mix (e.g., sum, weighted mean, or
mode) of the predictions of each learner.
The base learners can be weak learners.
They do not need to be very good; just better than random!

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting uses a sequence of learners where each one learns from
the errors of the previous ones.
The features of a boosting algorithm are:

@ There is a sequence of base learners
e.g., small decision trees or (squashed) linear functions.

@ Each learner is trained to fit the examples that the previous
learners did not fit well.

@ The final prediction uses a mix (e.g., sum, weighted mean, or
mode) of the predictions of each learner.

The base learners can be weak learners.

They do not need to be very good; just better than random!
These weak learners are then boosted to be components in the
ensemble that performs better than any of them.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression

@ Hyperparameter K is the number of rounds of boosting.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression

@ Hyperparameter K is the number of rounds of boosting.

@ The final prediction is
po + di(X) + - + dk(X)

where pg is an initial prediction e.g., mean of training data.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression

@ Hyperparameter K is the number of rounds of boosting.

@ The final prediction is
po + di(X) + - + dk(X)

where pg is an initial prediction e.g., mean of training data.

@ The ith prediction is
pi(X) = po + di(X) + - - - + di(X).

Then pi(X) =

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression

@ Hyperparameter K is the number of rounds of boosting.

@ The final prediction is
po + di(X) + - + dk(X)

where pg is an initial prediction e.g., mean of training data.

@ The ith prediction is
pi(X) = po + di(X) + - - - + di(X).

Then p;(X) = pi—1(X) + di(X).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

) p,'(X) = p,'_]_(X) =+ d,(X)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

o pi(X) = pi—1(X) + di(X).
@ Each d; is constructed so that the error of p; is minimal, given
that p;_1 is fixed.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

o pi(X) = pi—1(X) + di(X).
@ Each d; is constructed so that the error of p; is minimal, given
that p;_1 is fixed.

@ At each stage, the base learner learns c//\, to minimize
Zloss pi_i(e)+di(e), Y(e)) = Zloss (e)—pi—1(e))-

for any loss based on the difference between the actual and
predicated value. (Which are these?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

o pi(X) = pi—1(X) + di(X).
@ Each d; is constructed so that the error of p; is minimal, given
that p;_1 is fixed.

@ At each stage, the base learner learns c//\, to minimize
Zloss pi_i(e)+di(e), Y(e)) = Zloss (e)—pi—1(e))-

for any loss based on the difference between the actual and
predicated value. (Which are these?)

@ The ith learner learns dj(e) to fit Yj(e) — pi—1(e).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

p,'(X) = p,'_]_(X) + d,(X)
Each d; is constructed so that the error of p; is minimal, given
that p;_1 is fixed.

At each stage, the base learner learns c//\, to minimize
Zloss pi_i(e)+di(e), Y(e)) = Zloss (e)—pi—1(e))-

for any loss based on the difference between the actual and
predicated value. (Which are these?)

The ith learner learns dj(e) to fit Yj(e) — pi—1(e).

This is equivalent to learning from a modified dataset, where
the previous prediction is subtracted from the actual value of
the training set.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Functional Gradient Boosting for Regression (cont.)

p,'(X) = p,'_]_(X) + d,(X)
Each d; is constructed so that the error of p; is minimal, given
that p;_1 is fixed.

At each stage, the base learner learns c//\, to minimize
Zloss pi_i(e)+di(e), Y(e)) = Zloss (e)—pi—1(e))-

for any loss based on the difference between the actual and
predicated value. (Which are these?)

The ith learner learns dj(e) to fit Yj(e) — pi—1(e).

This is equivalent to learning from a modified dataset, where
the previous prediction is subtracted from the actual value of
the training set.

Each learner is made to correct the errors of the previous
prediction.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

1. procedure Boosting_learner(Xs, Y, Es, L, K)
2: Inputs
3 Xs: set of input features; Y: target feature; Es:

training examples; L: base learner; K: number of components
in the ensemble

Output
5: function to make prediction on examples

»

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

. procedure Boosting_learner(Xs, Y, Es, L, K)
Inputs
Xs: set of input features; Y: target feature; Es:
training examples; L: base learner; K: number of components
in the ensemble
Output
function to make prediction on examples

mean == Y g Y(e)/|Es|
define po(e) = mean

W

N ok

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

. procedure Boosting_learner(Xs, Y, Es, L, K)
Inputs
Xs: set of input features; Y: target feature; Es:
training examples; L: base learner; K: number of components
in the ensemble
Output
function to make prediction on examples
mean == Y g Y(e)/|Es|
define po(e) = mean
for each / from 1 to K do
let E; = {(Xs(e), Y(e) — pi—1(e)) for e € Es}

W

e e N s

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

1. procedure Boosting_learner(Xs, Y, Es, L, K)
2: Inputs
3 Xs: set of input features; Y: target feature; Es:
training examples; L: base learner; K: number of components
in the ensemble
Output
function to make prediction on examples
mean == Y g Y(e)/|Es|
define po(e) = mean
for each / from 1 to K do
let E; = {(Xs(e), Y(e) — pi—1(e)) for e € Es}
10: let d; = L(E;) > Learns function on examples given
(x,y) pairs

e e N s

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

1. procedure Boosting_learner(Xs, Y, Es, L, K)
2: Inputs
3 Xs: set of input features; Y: target feature; Es:

training examples; L: base learner; K: number of components
in the ensemble

4 Output

5: function to make prediction on examples

6: mean == Y g Y(e)/|Es|

7: define po(e) = mean

8 for each / from 1 to K do

9 let E; = {(Xs(e), Y(e) — pi—1(e)) for e € Es}

10: let d; = L(E;) > Learns function on examples given
(x,) pairs
11 define pi(e) = pi—1(e) + di(e)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Boosting_learner

1. procedure Boosting_learner(Xs, Y, Es, L, K)
2: Inputs
3 Xs: set of input features; Y: target feature; Es:

training examples; L: base learner; K: number of components
in the ensemble

4 Output

5: function to make prediction on examples

6: mean == Y g Y(e)/|Es|

7: define po(e) = mean

8 for each / from 1 to K do

9 let E; = {(Xs(e), Y(e) — pi—1(e)) for e € Es}

10: let d; = L(E;) > Learns function on examples given
(x,y) pairs

11 define pi(e) = pi—1(e) + di(e)

12: return pj

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

@ Gradient-boosted trees are generalized linear models. The
features are binary decision trees, learned using boosting.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

@ Gradient-boosted trees are generalized linear models. The
features are binary decision trees, learned using boosting.
@ For regression, the loss is regularized squared error:

K
(Z(y@ - ye)2) + Z Q(fe).

e

The regularization is Q(f) = v * |w| + 3\ * > W , where w is
vector of weights. v and X are nonnegative numbers.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

@ Gradient-boosted trees are generalized linear models. The
features are binary decision trees, learned using boosting.
@ For regression, the loss is regularized squared error:

K
(Z(y@ - ye)2) + Zﬂ(m-
B _
The regularization is Q(f) = v * |w| + 3\ * > W , where w is
vector of weights. v and X are nonnegative numbers.
@ For Boolean classification, predict the sigmoid of sum of trees
K
Ve = sigmoid(z fi(xe))
k=1

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

@ Gradient-boosted trees are generalized linear models. The
features are binary decision trees, learned using boosting.
@ For regression, the loss is regularized squared error:

K
(Z(y@ - ye)2) + Z Q(fe).

e

The regularization is Q(f) = v * |w| + 3\ * > W , where w is
vector of weights. v and X are nonnegative numbers.
@ For Boolean classification, predict the sigmoid of sum of trees
K
Ve = sigmoid(z fi(xe))
k=1
Optimize sum of log loss with the same regularization:

K
(Z Iog/oss(fe,ye)> + Z Q(f).
e k=1

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

o Gradient-boosted trees, the tress are build sequentially: each
tree is learned assuming the previous trees are fixed.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

o Gradient-boosted trees, the tress are build sequentially: each
tree is learned assuming the previous trees are fixed.
@ Two issues:

» Selecting leaf values
» Selecting splits

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Gradient-Boosted Trees

o Gradient-boosted trees, the tress are build sequentially: each
tree is learned assuming the previous trees are fixed.
@ Two issues:
» Selecting leaf values
» Selecting splits
@ For regression with squared error (or any loss based on the
difference between the actual and predicated value), learn a
tree for the difference between data and previous prediction.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

Selecting Leaf Values: Boolean Classification

@ For the tth tree, optimize log loss with L2 regularization:

t
velt) = sigmoid(z fr(xe))
k=1

R 1
£ = Z logloss(ye(t),ye) + 5/\ * Z WJ-2 + constant
e J

o Consider jth leaf, where [; = {e | g(xe)=/} is the set of
training examples that map to it.
e Taking the derivative with respect to w;:

0 ~
E(t) =A% V‘/J'+Z(Ye _Ye)

ow;
J ecl;

@ A gradient descent step gives (Newton—Raphson method):
ey (e — 727V
Dee el T x (17) +

VVJ-:

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.5

