
Overfitting

Overfitting occurs when the learner finds regularities in the
training set that do not occur in the world (or in the test set).

Model tries to find signal in randomness.

Often results in
▶ more complex models than can be justified by the limited data.
▶ overconfidence: more extreme probabilities than is justified.

Fitting the training set better does not mean fitting the test
set or better predictions of future cases

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 1 / 14

Example of Overfitting: Restaurant Ratings

We have a web site where people rate restaurants with 1 to 5
stars.

We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

How can we determine the most liked restaurant?

Are the restaurants with the highest average rating the most
liked restaurants?

Which restaurants have the highest average rating?

Which restaurants have a rating of 5?
▶ Only restaurants with few ratings have an average rating of 5.
▶ Restaurants with few ratings but all high are unlikely to be as

good as the ratings indicate.

Ratings are a mix of quality and luck. Lots of data averages
out luck.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 2 / 14

Example of Overfitting: Model complexity

Polynomials of various degrees can be used to fit data:

0 1 2 3 4 5
x

0

5

10

15

20

y

data
degree=0
degree=1
degree=2
degree=3
degree=4

Can use standard linear regression with 1, x , x2, x3 . . . as
features. The maximum power with non-zero coefficient is the
degree of the polynomial.

Higher-degree polynomials can always(?) fit data better.

What happens with extrapolation?
How do polynomials of odd and even degrees differ?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 3 / 14

Test set error

Test set error is caused by:

Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:
▶ representation bias: the representation doesn’t containing a

hypothesis close to the ground truth
▶ search bias: the algorithm doesn’t search enough of the space

of hypotheses to find the best hypothesis.

Variance: error due to a lack of data.
A fixed amount of data has a bias–variance trade-off:
▶ a complicated model could be accurate, but there is not

enough data to estimate it accurately
▶ a simple may not be accurate, but you can estimate the

parameters reasonably well given the data

Noise: inherent error due to the data depending on features
not modeled or the process generating the data is inherently
stochastic.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 4 / 14

Pseudocounts

For many of the prediction measures, the optimal prediction
on the training data is the mean.

In the restaurant example, the mean rating wasn’t a good
measure (too extreme for restaurants with few ratings).

A simple solution is to start with some pseudo-examples:
▶ initially a restaurant is assumed to be average
▶ As data comes in, the observed ratings are added to the

pseudo-examples
▶ Don’t need to store pseudo-examples, just the sufficient

statistics: pseudocounts.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 5 / 14

Pseudocounts

Suppose the examples are the values v1, . . . , vn

You want to make a prediction for the next v , written as v̂ .

When n = 0 – there is no data – use prediction a0

For the other cases, use

v̂ =
c ∗ a0 +

∑
i vi

c + n

where c is a nonnegative real-value constant.

The value of c controls the relative importance of the initial
hypothesis (the prior) and the data.

a0 and c can be estimated from other data (e.g., other
restaurants)

A theoretical justification of pseudocounts is given in Chapter 10.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 6 / 14

Regularization

“What can be done with fewer [assumptions] is done
in vain with more.”

William of Ockham (1285–1349)

Prefer simpler hypotheses over more complex ones.

Regularization: optimize fit-to-data plus a term that penalizes
complexity

Find a predictor Ŷ to minimize(∑
e

loss(Ŷ (e),Y (e))

)
+ λ ∗ regularizer(Ŷ)

▶ loss(Ŷ (e),Y (e)) is the loss of example e for predictor Ŷ
▶ regularizer(Ŷ) is a penalty term that penalizes complexity.
▶ The regularization parameter, λ, trades off fit-to-data and

model simplicity

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 7 / 14

Regularization

In decision tree learning, one complexity measure is the
number of leaves in a decision tree.

When building a decision tree, you could optimize the sum of
a loss plus a function of the size of the decision tree,
minimizing(∑

e∈Es
loss(Ŷ (e),Y (e))

)
+ γ ∗ |tree|

where |tree| is the number of leaves in a tree representation of
Ŷ .

A single split on a leaf increases the number of leaves by 1.

When greedily splitting, a single split is worthwhile if it
reduces the sum of losses by γ.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 8 / 14

L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

minimize ErrorE (w) =
∑
e∈E

(
Y (e)− f (

∑
i

wiXi (e))

)2

.

L2 regularization (ridge regression):

minimize
∑
e∈E

(
Y (e)− f (

∑
i

wiXi (e))

)2

+ λ
∑
i

w2
i

L1 regularization (lasso):

minimize
∑
e∈E

(
Y (e)− f (

∑
i

wiXi (e))

)2

+ λ
∑
i

|wi |

λ is a parameter given a priori and/or learned.
© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 9 / 14

SGD with L1 and L2 Regularization

An L2 regularization is implemented in stochastic gradient
descent by updating each weight wi after a batch by:

wi := wi − η ∗ λ ∗ b/|Es| ∗ wi

where b is batch size.
The m/|Es| is because the regularization is λ for the whole
dataset, but the update occurs for each batch.

An L1 regularizer can be implemented by updating each
weight after a batch by:

wi := sign(wi) ∗max(0, |wi | − η ∗ λ ∗m/|Es|).

This is called iterative soft-thresholding

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 10 / 14

Cross Validation

To evaluate an algorithms some of the data is used as test
data (random data or latest in time). The test set must not
be used for any part of training or choosing parameters.

Idea: split the remaining data into:
▶ training set
▶ validation set

A hyperparameter is a parameter used to define what is being
optimized, or how it is optimized.

Use the new training set to train on. Select the
hyperparameters that work best on the validation set.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 11 / 14

Cross Validation

Cross validation: use some of the non test set as a surrogate for
test data:

Data

⎬ ⎫⎭⎬ ⎫⎭⎬ ⎫⎭ ｜｜｜｜｜｜

testvalidationtraining

learner predictor

Evaluationhyperparameters

predictor Evaluation

test error

learner

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 12 / 14

Cross Validation

Cross validation assumptions: hyperparameter values that are best
for validation examples will be best for test examples.

0 20 40 60 80
min_child_weight

0.575

0.600

0.625

0.650

0.675

0.700

0.725
av

er
ag

e
lo

g
lo

ss
 (b

its
)

validation for log loss (bits)
test set for log loss (bits)

minimum number of examples that needs to be in a child for
decision-tree learning.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 13 / 14

k-Fold Cross Validation

With limited data, either training data or validation data will
be small (or both).

How can we avoid overfitting to these small datasets?

k-Fold Cross Validation:
▶ partition non-test data Es into k folds, E1, . . .Ek

(k = 10 is common for 10-fold cross validation)
▶ For i from 1 to k :

train on Es \ Ei evaluate on Ei

▶ Select the hyperparameter settings with lowest average error
on E1, . . .Ek

▶ Train a model on Es with these settings

If k = 10, during hyperparameter tuning, 90% of the training
examples are used for training and 10% of the examples for
validation.
It does this 10 times, so each example is used once in a
validation set.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 14 / 14

