@ Overfitting occurs when the learner finds regularities in the
training set that do not occur in the world (or in the test set).

@ Model tries to find signal in randomness.
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@ Overfitting occurs when the learner finds regularities in the
training set that do not occur in the world (or in the test set).
@ Model tries to find signal in randomness.

o Often results in
» more complex models than can be justified by the limited data.
» overconfidence: more extreme probabilities than is justified.
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@ Overfitting occurs when the learner finds regularities in the
training set that do not occur in the world (or in the test set).
@ Model tries to find signal in randomness.
o Often results in
» more complex models than can be justified by the limited data.
» overconfidence: more extreme probabilities than is justified.
o Fitting the training set better does not mean fitting the test
set or better predictions of future cases
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Example of Overfitting: Restaurant Ratings

@ We have a web site where people rate restaurants with 1 to 5
stars.

e We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

@ How can we determine the most liked restaurant?
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@ Are the restaurants with the highest average rating the most
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@ We have a web site where people rate restaurants with 1 to 5
stars.

e We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

How can we determine the most liked restaurant?
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Example of Overfitting: Restaurant Ratings

@ We have a web site where people rate restaurants with 1 to 5
stars.

e We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

How can we determine the most liked restaurant?

Are the restaurants with the highest average rating the most
liked restaurants?

Which restaurants have the highest average rating?

Which restaurants have a rating of 57
» Only restaurants with few ratings have an average rating of 5.
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Example of Overfitting: Restaurant Ratings

@ We have a web site where people rate restaurants with 1 to 5
stars.

e We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

How can we determine the most liked restaurant?

Are the restaurants with the highest average rating the most
liked restaurants?

Which restaurants have the highest average rating?

Which restaurants have a rating of 57

» Only restaurants with few ratings have an average rating of 5.
» Restaurants with few ratings but all high are unlikely to be as
good as the ratings indicate.
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Example of Overfitting: Restaurant Ratings

@ We have a web site where people rate restaurants with 1 to 5
stars.

e We want to report the most liked restaurant(s) — the one
predicted to have the best future ratings.

How can we determine the most liked restaurant?

Are the restaurants with the highest average rating the most
liked restaurants?

Which restaurants have the highest average rating?

Which restaurants have a rating of 57

» Only restaurants with few ratings have an average rating of 5.
» Restaurants with few ratings but all high are unlikely to be as
good as the ratings indicate.

Ratings are a mix of quality and luck. Lots of data averages
out luck.
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Example of Overfitting: Model complexity

Polynomials of various degrees can be used to fit data:

e« = data
201 degree=0
-~ degree=1
- degree=2
15 degree=3
— degree=4
@ Can use standard linear regression with 1, x, x2, x3... as

features. The maximum power with non-zero coefficient is the
degree of the polynomial.
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« o data
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- degree=1
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@ Can use standard linear regression with 1, x, x2, x3... as
features. The maximum power with non-zero coefficient is the
degree of the polynomial.

o Higher-degree polynomials can always(?) fit data better.
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Example of Overfitting: Model complexity

Polynomials of various degrees can be used to fit data:

* data
— degree=0
- degree=1
- degree=2
15 degree=3
— degree=4

@ Can use standard linear regression with 1, x, x2, x3... as

features. The maximum power with non-zero coefficient is the
degree of the polynomial.

o Higher-degree polynomials can always(?) fit data better.

@ What happens with extrapolation?
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Example of Overfitting: Model complexity

Polynomials of various degrees can be used to fit data:

* data
— degree=0
- degree=1
- degree=2
15 degree=3
— degree=4

@ Can use standard linear regression with 1, x, x2, x3... as

features. The maximum power with non-zero coefficient is the
degree of the polynomial.

o Higher-degree polynomials can always(?) fit data better.

@ What happens with extrapolation?
How do polynomials of odd and even degrees differ?
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Test set error

Test set error is caused by:

@ Bias: error due to the algorithm finding an imperfect model.
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Test set error is caused by:
@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:

P representation bias: the representation doesn't containing a
hypothesis close to the ground truth
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The bias can be divided into:
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» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.
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@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:
P representation bias: the representation doesn't containing a
hypothesis close to the ground truth
» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.

@ Variance: error due to a lack of data.
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Test set error is caused by:

@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:
P representation bias: the representation doesn't containing a
hypothesis close to the ground truth
» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.

@ Variance: error due to a lack of data.
A fixed amount of data has a bias—variance trade-off:
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Test set error

Test set error is caused by:

@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:

P representation bias: the representation doesn't containing a
hypothesis close to the ground truth

» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.

@ Variance: error due to a lack of data.
A fixed amount of data has a bias—variance trade-off:

» a complicated model could be accurate, but there is not
enough data to estimate it accurately

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4



Test set error

Test set error is caused by:

@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:
P representation bias: the representation doesn't containing a
hypothesis close to the ground truth
» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.

@ Variance: error due to a lack of data.
A fixed amount of data has a bias—variance trade-off:
» a complicated model could be accurate, but there is not
enough data to estimate it accurately
» a simple may not be accurate, but you can estimate the
parameters reasonably well given the data
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Test set error

Test set error is caused by:

@ Bias: error due to the algorithm finding an imperfect model.
The bias can be divided into:
P representation bias: the representation doesn't containing a
hypothesis close to the ground truth
» search bias: the algorithm doesn’t search enough of the space
of hypotheses to find the best hypothesis.

@ Variance: error due to a lack of data.
A fixed amount of data has a bias—variance trade-off:
» a complicated model could be accurate, but there is not
enough data to estimate it accurately
» a simple may not be accurate, but you can estimate the
parameters reasonably well given the data
@ Noise: inherent error due to the data depending on features
not modeled or the process generating the data is inherently
stochastic.
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Pseudocounts

@ For many of the prediction measures, the optimal prediction
on the training data is the mean.
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Pseudocounts

@ For many of the prediction measures, the optimal prediction
on the training data is the mean.

@ In the restaurant example, the mean rating wasn't a good
measure (too extreme for restaurants with few ratings).
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Pseudocounts

@ For many of the prediction measures, the optimal prediction
on the training data is the mean.
@ In the restaurant example, the mean rating wasn't a good
measure (too extreme for restaurants with few ratings).
@ A simple solution is to start with some pseudo-examples:
» initially a restaurant is assumed to be average
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Pseudocounts

@ For many of the prediction measures, the optimal prediction
on the training data is the mean.

@ In the restaurant example, the mean rating wasn't a good
measure (too extreme for restaurants with few ratings).
@ A simple solution is to start with some pseudo-examples:

» initially a restaurant is assumed to be average
» As data comes in, the observed ratings are added to the
pseudo-examples
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Pseudocounts

@ For many of the prediction measures, the optimal prediction
on the training data is the mean.

@ In the restaurant example, the mean rating wasn't a good
measure (too extreme for restaurants with few ratings).
@ A simple solution is to start with some pseudo-examples:
» initially a restaurant is assumed to be average
» As data comes in, the observed ratings are added to the
pseudo-examples
» Don't need to store pseudo-examples, just the sufficient
statistics: pseudocounts.
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Pseudocounts

@ Suppose the examples are the values vq, ..., v,

@ You want to make a prediction for the next v, written as v.
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Pseudocounts

@ Suppose the examples are the values vq, ..., v,
@ You want to make a prediction for the next v, written as v.

@ When n = 0 — there is no data — use prediction ag
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Pseudocounts

@ Suppose the examples are the values vq, ..., v,
@ You want to make a prediction for the next v, written as v.
@ When n = 0 — there is no data — use prediction ag

@ For the other cases, use

c*ag—i—zl-v;
c+n

V=

where ¢ is a nonnegative real-value constant.
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Pseudocounts

@ Suppose the examples are the values vq, ..., v,

@ You want to make a prediction for the next v, written as v.
@ When n = 0 — there is no data — use prediction ag

@ For the other cases, use

c*ag—i—zl-v;
c+n

V=

where ¢ is a nonnegative real-value constant.

@ The value of ¢ controls the relative importance of the initial
hypothesis (the prior) and the data.
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Pseudocounts

Suppose the examples are the values vi,..., v,

You want to make a prediction for the next v, written as V.
When n = 0 — there is no data — use prediction ag

For the other cases, use

c*ag—i—zl-v;
c+n

V=

where ¢ is a nonnegative real-value constant.

The value of ¢ controls the relative importance of the initial
hypothesis (the prior) and the data.

ap and ¢ can be estimated from other data (e.g., other
restaurants)
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Pseudocounts

@ Suppose the examples are the values vq, ..., v,

@ You want to make a prediction for the next v, written as v.
@ When n = 0 — there is no data — use prediction ag

@ For the other cases, use

c*ag—i—zl-v;
c+n

V=

where ¢ is a nonnegative real-value constant.

@ The value of ¢ controls the relative importance of the initial
hypothesis (the prior) and the data.

@ ap and c¢ can be estimated from other data (e.g., other
restaurants)

A theoretical justification of pseudocounts is given in Chapter 10.
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Regularization

“What can be done with fewer [assumptions] is done
in vain with more.”

William of Ockham (1285-1349)
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Regularization

“What can be done with fewer [assumptions] is done
in vain with more.”

William of Ockham (1285-1349)

@ Prefer simpler hypotheses over more complex ones.
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Regularization

“What can be done with fewer [assumptions] is done
in vain with more.”

William of Ockham (1285-1349)

@ Prefer simpler hypotheses over more complex ones.

@ Regularization: optimize fit-to-data plus a term that penalizes
complexity

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4



Regularization

“What can be done with fewer [assumptions] is done
in vain with more.”

William of Ockham (1285-1349)

@ Prefer simpler hypotheses over more complex ones.

@ Regularization: optimize fit-to-data plus a term that penalizes
complexity

@ Find a predictor Y to minimize
(Z loss(Y (e), Y(e))) + X * regularizer(Y')

> Joss(Y(e), Y(e)) is the loss of example e for predictor Y

> regu/arizer(\A/) is a penalty term that penalizes complexity.

» The regularization parameter, A, trades off fit-to-data and
model simplicity
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Regularization

@ In decision tree learning, one complexity measure is the
number of leaves in a decision tree.

@ When building a decision tree, you could optimize the sum of
a loss plus a function of the size of the decision tree,
minimizing

Z loss(Y(e), Y(e)) | + ~ * |tree]
eckEs

where |tree| is the number of leaves in a tree representation of
Y.
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Regularization

@ In decision tree learning, one complexity measure is the
number of leaves in a decision tree.

@ When building a decision tree, you could optimize the sum of
a loss plus a function of the size of the decision tree,
minimizing

Z loss(Y(e), Y(e)) | + ~ * |tree]
eckEs

where |tree| is the number of leaves in a tree representation of
Y.

@ A single split on a leaf increases the number of leaves by 1.
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Regularization

@ In decision tree learning, one complexity measure is the
number of leaves in a decision tree.

@ When building a decision tree, you could optimize the sum of
a loss plus a function of the size of the decision tree,
minimizing

Z loss(Y(e), Y(e)) | + ~ * |tree]
eckEs

where |tree| is the number of leaves in a tree representation of
Y.
@ A single split on a leaf increases the number of leaves by 1.

@ When greedily splitting, a single split is worthwhile if it
reduces the sum of losses by ~.
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L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

2
minimize Errorg(w) = Z (Y(e) — f(z W,-X,-(e))> .

ecE
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L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

2
minimize Errorg(w) = Z (Y(e) — f(z W,-X,-(e))> .

ecE

L2 regularization (ridge regression):
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L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

2
minimize Errorg(w) = Z (Y(e) — f(z W,-X,-(e))> .

ecE

L2 regularization (ridge regression):

2
minimize Z (Y(e) - f(z WiXi(e))) + )\Z w}

ecE
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L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

2
minimize Errorg(w) = Z (Y(e) — f(z W,-X,-(e))> .

ecE

L2 regularization (ridge regression):

ecE

2
minimize Z (Y(e) - f(z WiXi(e))) + )\Z w}

L1 regularization (lasso):

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4



L1 and L2 Regularization

Linear/logistic regression, minimize sum-of-squares:

2
minimize Errorg(w) = Z (Y(e) — f(z W,-X,-(e))> .

ecE

L2 regularization (ridge regression):

ecE

2
minimize Z (Y(e) - f(z WiXi(e))) + )\Z w}

L1 regularization (lasso):

2
minimize Z <Y(e) — f(z WiXi(e))) + )\Z |wi|

ecE

A is a parameter given a priori and/or learned.
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SGD with L1 and L2 Regularization

@ An L2 regularization is implemented in stochastic gradient
descent by updating each weight w; after a batch by:

w; == w; — % X% b/|Es| * w;

where b is batch size.
The m/|Es| is because the regularization is A for the whole
dataset, but the update occurs for each batch.
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SGD with L1 and L2 Regularization

@ An L2 regularization is implemented in stochastic gradient
descent by updating each weight w; after a batch by:

wi = w; —n* A b/|Es| x w;

where b is batch size.
The m/|Es| is because the regularization is A for the whole
dataset, but the update occurs for each batch.

@ An L1 regularizer can be implemented by updating each
weight after a batch by:

w; = sign(w;) * max(0, |w;| —n * X% m/|Es|).

This is called iterative soft-thresholding
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Cross Validation

@ To evaluate an algorithms some of the data is used as test
data (random data or latest in time). The test set must not
be used for any part of training or choosing parameters.
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Cross Validation

@ To evaluate an algorithms some of the data is used as test
data (random data or latest in time). The test set must not
be used for any part of training or choosing parameters.

@ ldea: split the remaining data into:

» training set
> validation set
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Cross Validation

@ To evaluate an algorithms some of the data is used as test
data (random data or latest in time). The test set must not
be used for any part of training or choosing parameters.

@ ldea: split the remaining data into:

» training set
> validation set

@ A hyperparameter is a parameter used to define what is being
optimized, or how it is optimized.

@ Use the new training set to train on. Select the
hyperparameters that work best on the validation set.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.4 11/14



Cross Validation

Cross validation: use some of the non test set as a surrogate for
test data:

Data

training validation test

e >
hyperparameters @

Evaluation

test error
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Cross Validation

Cross validation assumptions: hyperparameter values that are best
for validation examples will be best for test examples.
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Cross Validation

Cross validation assumptions: hyperparameter values that are best
for validation examples will be best for test examples.
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average log loss (bits)
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0.600

‘1' l' —— validation for log loss (bits)
1

0.575 A - —-—- test set for log loss (bits)

0 20 40 60 80
min_child_weight

minimum number of examples that needs to be in a child for
decision-tree learning.
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k-Fold Cross Validation

@ With limited data, either training data or validation data will
be small (or both).
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k-Fold Cross Validation

@ With limited data, either training data or validation data will
be small (or both).

@ How can we avoid overfitting to these small datasets?
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k-Fold Cross Validation

@ With limited data, either training data or validation data will
be small (or both).

@ How can we avoid overfitting to these small datasets?

@ k-Fold Cross Validation:
» partition non-test data Es into k folds, Ei,... Ex
(k =10 is common for 10-fold cross validation)
» For i from 1 to k:
train on Es \ E; evaluate on E;
» Select the hyperparameter settings with lowest average error
on E17 . Ek
» Train a model on Es with these settings
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k-Fold Cross Validation

@ With limited data, either training data or validation data will
be small (or both).

@ How can we avoid overfitting to these small datasets?
@ k-Fold Cross Validation:
» partition non-test data Es into k folds, Ei,... Ex
(k =10 is common for 10-fold cross validation)
» For i from 1 to k:
train on Es \ E; evaluate on E;
» Select the hyperparameter settings with lowest average error
on E17 . Ek
» Train a model on Es with these settings

e If k =10, during hyperparameter tuning, 90% of the training
examples are used for training and 10% of the examples for
validation.

It does this 10 times, so each example is used once in a
validation set.
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