At the end of the class you should be able to:

- show how decision-tree learning works on small examples
- explain the relationship between linear and logistic regression
- explain the updates of stochastic gradient descent

Many learning algorithms can be seen as deriving from:

- decision trees
- linear (and non-linear) classifiers

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

A (binary) decision tree (for a particular target feature) is a tree where:

- each internal (non-leaf) node is labeled with a condition, a Boolean function of examples, built using input features
- each internal node has two branches, one labeled *true* and the other *false*
- each leaf of the tree is labeled with a point estimate of the target feature.

Decision trees are also called classification trees when the target is discrete, and regression trees when the target is real-valued.

• Like an if-then-else structure in a programming language.

Training Examples:

	Action	Author	Thread	Length	Where	
e1	skips	known	new	long	home	
e2	reads	unknown	new	short	work	
e3	skips	unknown	old	long	work	
e4	skips	known	old	long	home	
e5	reads	known	new	short	home	
e6	skips	known	old	long	work	
New Examples:						
e7	???	known	new	short	work	
e8	???	unknown	new	short	work	

We want to classify new examples on feature *Action* based on the examples' *Author*, *Thread*, *Length*, and *Where*.

Example Decision Trees

Equivalent Programs

define action(e):
 if long(e): return skips
 else if new(e): return reads
 else if unknown(e): return skips
 else: return reads

Logic Program:

$$\begin{aligned} & reads(E) \leftarrow short(E) \land new(E). \\ & reads(E) \leftarrow short(E) \land follow_up(E) \land known(E). \\ & skips(E) \leftarrow long(E). \\ & skips(E) \leftarrow short(E) \land follow_up(E) \land unknown(E). \end{aligned}$$

or with negation as failure:

reads \leftarrow *short* \land *new*.

 $reads \leftarrow short \land \sim new \land known.$

or as a logical fromula: reads \leftrightarrow short \land (new \lor known)

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?
- How should you go about building a decision tree? The space of decision trees is too big for systematic search for the smallest decision tree.

- The input is a set of input features, a target feature and, a set of training examples.
- Either:
 - Stop and return a value for the target feature or a distribution over target feature values
 - Choose a condition (e.g. an input feature) to split on. build a subtree for those examples with with the condition true and the examples with the condition false.

• When to stop:

- no more input features
- all examples are classified the same
- too few examples to make an informative split
- no split give an appreciable improvement in error
- Which test to split on isn't defined. Often we use myopic split: which single split gives smallest error?

Decision_tree_learner

- 1: procedure $DT_learner(Cs, Y, Es, \gamma)$
- 2: **Inputs** *Cs*: set of possible conditions; *Y*: target feature; *Es*: training examples; *γ*: improvement threshold
- **Output** function to predict a value of Y for an example 3. $c := select_split(Es, Cs, \gamma)$ 4: ▷ see next slide if c = None then \triangleright stopping criterion is true 5: $v := leaf_prediction(Y, Es)$ \triangleright Prediction on Y 6: define T(e) = v7: 8: return T 9: else $true_examples := \{e \in Es : c(e)\}$ 10: $t_1 := DT_{learner}(Cs \setminus \{c\}, Y, true_{examples}, \gamma)$ 11: 12: $false_examples := \{e \in Es : \neg c(e)\}$ $t_0 := DT_learner(Cs \setminus \{c\}, Y, false_examples, \gamma)$ 13: **define** $T(e) = \text{ if } c(e) \text{ then } t_1(e) \text{ else } t_0(e)$ 14: 15: return T

< L

11/27

1: procedure
$$select_split(Es, Y, Cs, \gamma)$$

2: $best_val := sum_loss(Y, Es) - \gamma$
3: $best_split := None$
4: for $c \in Cs$ do
5: $val := sum_loss(Y, \{e \in Es \mid c(e)\})$
6: $+ sum_loss(Y, \{e \in Es \mid \neg c(e)\})$
7: if $val < best_val$ then
8: $best_val := val$
9: $best_split := c$

10: **return** *best_split*

For log loss: Prediction is empirical proportion of Y value

•
$$P = leaf_prediction(Y, Es) : v \mapsto \frac{|\{e' \in Es: Y(e) = v\}|}{|Es|}$$

 $sum_loss(Y, Es) = \sum_{e \in Es} log(P(Y(e)))$

< 🗆 I

Training Examples:

	Action	Author	Thread	Length	Where	
e1	skips	known	new	long	home	
e2	reads	unknown	new	short	work	
e3	skips	unknown	old	long	work	
e4	skips	known	old	long	home	
e5	reads	known	new	short	home	
e6	skips	known	old	long	work	
New Examples:						
e7	???	known	new	short	work	
e8	???	unknown	new	short	work	

Aim: classify new examples on feature *Action* based on the examples' *Author*, *Thread*, *Length*, and *Where*.

< 🗆 I

Example: possible splits

- This algorithm can overfit the data. This occurs when noise and correlations in the training set that are not reflected in the data as a whole.
- To handle overfitting:
 - restrict the splitting, and split only when the split is useful.
 - allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
 - learn multiple trees and average them (decision forests, random forests)

A linear function of features X_1, \ldots, X_n is a function of the form:

$$f^{\overline{w}}(X_1,\ldots,X_n)=w_0+w_1X_1+\cdots+w_nX_n$$

Invent a new feature X_0 which has value 1, to make it not a special case.

$$f^{\overline{w}}(X_1,\ldots,X_n)=\sum_{i=0}^n w_i X_i$$

- Aim: predict feature Y from features X_1, \ldots, X_n .
- A feature is a function of an example.
 X_i(e) is the value of feature X_i on example e.
- Linear regression: predict a linear function of the input features.

$$\widehat{Y}^{\overline{w}}(e) = w_0 + w_1 X_1(e) + \dots + w_n X_n(e)$$
$$= \sum_{i=0}^n w_i X_i(e) ,$$

 $\widehat{Y^{w}}(e)$ is the predicted value for Y on example e. It depends on the weights \overline{w} . The sum of squares error on examples E for target Y is:

$$SSE(E, \overline{w}) = \sum_{e \in E} (Y(e) - \widehat{Y}^{\overline{w}}(e))^2$$
$$= \sum_{e \in E} \left(Y(e) - \sum_{i=0}^n w_i * X_i(e) \right)^2.$$

Goal: given examples *E*, find weights that minimize $SSE(E, \overline{w})$.

Finding weights that minimize $Error(E, \overline{w})$

- Find the minimum analytically. Effective when it can be done (e.g., for linear regression).
- Find the minimum iteratively.
 Works for larger classes of problems.
 Gradient descent:

$$w_i \leftarrow w_i - \eta \frac{\partial}{\partial w_i} Error(E, \overline{w})$$

 η is the gradient descent step size, the learning rate.

• Often update weights after each example:

— incremental gradient descent updates parameters after each example

stochastic gradient descent updates parameters after a batch of (randomly selected) examples
 Often much faster than updating weights after sweeping through examples, but may not converge to a local optimum

19/27

Linear Classifier

- Assume you are doing binary classification, with classes {0,1} (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$f^{\overline{w}}(X_1,\ldots,X_n)=f(w_0+w_1X_1+\cdots+w_nX_n)$$

where f is an activation function.

• A simple activation function is the step function:

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Cannot be used in gradient descent because it has a derivative of 0 almost everywhere (except at 0)

The sigmoid or logistic activation function

f'(x) = f(x)(1 - f(x))

A logistic function is the sigmoid of a linear function.

Logistic regression: find weights to minimize log loss of a logistic function.

< 🗆

When the domain of target Y is $\{0, 1\}$:

•
$$\widehat{Y}(e) = sigmoid\left(\sum_{i=0}^{n} w_i * X_i(e)\right).$$

•
$$\delta(e) = Y(e) - \widehat{Y}^{\overline{w}}(e)$$

A natural measure for sigmoid is log loss:

$$LL(E,\overline{w}) = \sum_{e \in E} Y(e) * \log \widehat{Y}(e) + (1 - Y(e)) * \log(1 - \widehat{Y}(e))$$

$$\frac{\partial}{\partial w_i} LL(E, \overline{w}) = \sum_{e \in E} \delta(e) * X_i(e)$$

Linear Learner with Stochastic Gradient Descent

- 1: **procedure** Linear_learner(Xs, Y, Es, η, b)
- 2: Input features: $Xs = \{X_1, \ldots, X_n\}$. Target feature: Y. Examples: Es. Learning rate: η . Batch size: b

3: initialize
$$w_0, \ldots, w_n$$
 randomly

4: **define**
$$pred(e) = \phi(\sum_i w_i * X_i(e))$$

5: repeat

- 6: for each $i \in [0, n]$ do d[i] := 0
- 7: select batch $B \subseteq Es$ of size b
- 8: for each example e in B do

9:
$$error := pred(e) - Y(e)$$

10: for each
$$i \in [0, n]$$
 do

$$d_i := d_i + error * X_i(e)$$

12: **for each**
$$i \in [0, n]$$
 do

$$w_i := w_i - \eta * d_i/b$$

- 14: **until** termination
- 15: return pred

Ex	new	short	home	reads		δ	SSE
				Predicted	Obs		
e1	0	0	0	$f(0.4) \approx 0.6$	0	-0.6	0.36
e2	1	1	0	$f(-1.2) \approx 0.23$	0	-0.23	0.053
e3	1	0	1	f(0.9) pprox 0.71	1	0.29	0.084

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is *true* on one side of the hyperplane and *false* on the other side.
- For the sigmoid function, the hyperplane is when:

$$w_0+w_1*X_1+\cdots+w_n*X_n=0$$

This separates the predictions > 0.5 and < 0.5.

• linearly separable implies the error can be arbitrarily small

Kernel Trick: use functions of input features (e.g., product)

Which linear separator to use can result in various algorithms:

- Perceptron
- Logistic Regression
- Support Vector Machines (SVMs)
- . . .

It's easy for a logistic function to represent
 "at least two of X₁,..., X_k are true":

w ₀	W_1	• • •	Wk
-15	10		10

This concept forms a large decision tree.

- Consider representing a conditional: "If X₇ then X₂ else X₃":
 - Simple in a decision tree.
 - For a linear separator it is impossible to represent as it is not linearly separable