Learning Objectives

At the end of the class you should be able to:

- show how decision-tree learning works on small examples
- explain the relationship between linear and logistic regression
- explain the updates of stochastic gradient descent

Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

- decision trees
- linear (and non-linear) classifiers

Learning Decision Trees

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

Decision trees

A (binary) decision tree (for a particular target feature) is a tree where:

- each internal (non-leaf) node is labeled with a condition, a Boolean function of examples, built using input features
- each internal node has two branches, one labeled true and the other false
- each leaf of the tree is labeled with a point estimate of the target feature.
Decision trees are also called classification trees when the target is discrete, and regression trees when the target is real-valued.

Decision trees

A (binary) decision tree (for a particular target feature) is a tree where:

- each internal (non-leaf) node is labeled with a condition, a Boolean function of examples, built using input features
- each internal node has two branches, one labeled true and the other false
- each leaf of the tree is labeled with a point estimate of the target feature.
Decision trees are also called classification trees when the target is discrete, and regression trees when the target is real-valued.
- Like an if-then-else structure in a programming language.

Example Classification Data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	???	known	new	short	work
e8	???	unknown	new	short	work

We want to classify new examples on feature Action based on the examples' Author, Thread, Length, and Where.

Example Decision Trees

Equivalent Programs

define action(e):
if long(e): return skips
else if new(e): return reads else if unknown(e): return skips else: return reads

Equivalent Programs

define action(e):
if long(e): return skips
else if new(e): return reads else if unknown(e): return skips else: return reads

Logic Program:

$$
\begin{aligned}
& \operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge \text { new }(E) \\
& \operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge \text { follow_up }(E) \wedge \text { known }(E) . \\
& \operatorname{skips}(E) \leftarrow \operatorname{long}(E) . \\
& \operatorname{skips}(E) \leftarrow \operatorname{short}(E) \wedge \text { follow_up }(E) \wedge \text { unknown }(E) .
\end{aligned}
$$

Equivalent Programs

define action(e):
if long(e): return skips
else if new(e): return reads else if unknown(e): return skips else: return reads

Logic Program:

```
\(\operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge \operatorname{new}(E)\).
\(\operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge\) follow_up \((E) \wedge\) known \((E)\).
\(\operatorname{skips}(E) \leftarrow \operatorname{long}(E)\).
\(\operatorname{skips}(E) \leftarrow \operatorname{short}(E) \wedge\) follow_up \((E) \wedge\) unknown \((E)\).
```

or with negation as failure:
reads \leftarrow short \wedge new.
reads \leftarrow short $\wedge \sim$ new \wedge known

Equivalent Programs

define action(e):
if long(e): return skips
else if new(e): return reads
else if unknown(e): return skips
else: return reads
Logic Program:

```
\(\operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge \operatorname{new}(E)\).
\(\operatorname{reads}(E) \leftarrow \operatorname{short}(E) \wedge\) follow_up \((E) \wedge\) known \((E)\).
\(\operatorname{skips}(E) \leftarrow \operatorname{long}(E)\).
\(\operatorname{skips}(E) \leftarrow \operatorname{short}(E) \wedge\) follow_up \((E) \wedge\) unknown \((E)\).
```

or with negation as failure:
reads \leftarrow short \wedge new.
reads \leftarrow short $\wedge \sim$ new \wedge known
or as a logical fromula: reads \leftrightarrow short $\wedge($ new \vee known $)$

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias.

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree.

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes?

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?

Issues in decision-tree learning

- Given some training examples, which decision tree should be generated?
- A decision tree can represent any discrete function of the input features.
- You need a bias. Example, prefer the smallest tree. Least depth? Fewest nodes? Which trees are the best predictors of unseen data?
- How should you go about building a decision tree? The space of decision trees is too big for systematic search for the smallest decision tree.

Searching for a Good Decision Tree

- The input is a set of input features, a target feature and, a set of training examples.
- Either:
- Stop and return a value for the target feature or a distribution over target feature values
- Choose a condition (e.g. an input feature) to split on. build a subtree for those examples with with the condition true and the examples with the condition false.

Choices in implementing the algorithm

- When to stop:

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split
- no split give an appreciable improvement in error

Choices in implementing the algorithm

- When to stop:
- no more input features
- all examples are classified the same
- too few examples to make an informative split
- no split give an appreciable improvement in error
- Which test to split on isn't defined. Often we use myopic split: which single split gives smallest error?

Decision_tree_learner

1: procedure $D T_{-}$learner $(C s, Y, E s, \gamma)$
2: Inputs Cs: set of possible conditions; Y : target feature;
Es: training examples; γ : improvement threshold
3: Output function to predict a value of Y for an example

4: $\quad c:=$ select_split $(E s, C s, \gamma)$
5: \quad if $c=$ None then
6:
7:
8:
9
10
11:
12
13:
14
15:
$v:=$ leaf_prediction $(Y, E s)$
return T
else
\triangleright stopping criterion is true
\triangleright Prediction on Y

```
true_examples :={e\inEs:c(e)}
    t
    false_examples :={e\inEs:\negc(e)}
    to := DT_learner(Cs\{c},Y,false_examples, }\gamma\mathrm{ )
    define}T(e)=\mathrm{ if }c(e)\mathrm{ then }\mp@subsup{t}{1}{(e) else to (e)
    return T
```

1: procedure select_split(Es, $Y, C s, \gamma)$
2: \quad best_val $:=\operatorname{sum} _l o s s(Y, E s)-\gamma$
3: \quad best_split $:=$ None
4: \quad for $c \in C s$ do
5: \quad val $:=\operatorname{sum} _$loss $(Y,\{e \in E s \mid c(e)\})$
6: $\quad+\operatorname{sum} _$loss $(Y,\{e \in E s \mid \neg c(e)\})$
7: \quad if val < best_val then
8: best_val $:=$ val
9: best_split $:=c$
10: return best_split
For log loss: Prediction is empirical proportion of Y value

- $P=$ leaf_prediction $(Y, E s): v \mapsto \frac{\left|\left\{e^{\prime} \in E s: Y(e)=v\right\}\right|}{|E s|}$

$$
\operatorname{sum} _\operatorname{loss}(Y, E s)=\sum_{e \in E s} \log (P(Y(e)))
$$

Example Classification Data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	???	known	new	short	work
e8	???	unknown	new	short	work

Aim: classify new examples on feature Action based on the examples' Author, Thread, Length, and Where.

Example: possible splits

Handling Overfitting

- This algorithm can overfit the data. This occurs when

Handling Overfitting

- This algorithm can overfit the data. This occurs when noise and correlations in the training set that are not reflected in the data as a whole.
- To handle overfitting:
- restrict the splitting, and split only when the split is useful.
- allow unrestricted splitting and prune the resulting tree where it makes unwarranted distinctions.
- learn multiple trees and average them (decision forests, random forests)

Linear Function

A linear function of features X_{1}, \ldots, X_{n} is a function of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}
$$

Invent a new feature X_{0} which has value 1 , to make it not a special case.

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=0}^{n} w_{i} X_{i}
$$

Linear Regression

- Aim: predict feature Y from features X_{1}, \ldots, X_{n}.
- A feature is a function of an example. $X_{i}(e)$ is the value of feature X_{i} on example e.
- Linear regression: predict a linear function of the input features.

$$
\begin{aligned}
\widehat{Y}^{\bar{w}}(e) & =w_{0}+w_{1} X_{1}(e)+\cdots+w_{n} X_{n}(e) \\
& =\sum_{i=0}^{n} w_{i} X_{i}(e)
\end{aligned}
$$

$\widehat{Y}^{\bar{w}}(e)$ is the predicted value for Y on example e. It depends on the weights \bar{w}.

Sum of squares error for linear regression

The sum of squares error on examples E for target Y is:

$$
\begin{aligned}
\operatorname{SSE}(E, \bar{w}) & =\sum_{e \in E}\left(Y(e)-\widehat{Y}^{\bar{w}}(e)\right)^{2} \\
& =\sum_{e \in E}\left(Y(e)-\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)^{2} .
\end{aligned}
$$

Goal: given examples E, find weights that minimize $\operatorname{SSE}(E, \bar{w})$.

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically. Effective when it can be done (e.g., for linear regression).

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

- Find the minimum iteratively.

Works for larger classes of problems.
Gradient descent:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial}{\partial w_{i}} \operatorname{Error}(E, \bar{w})
$$

η is the gradient descent step size, the learning rate.

Finding weights that minimize $\operatorname{Error}(E, \bar{w})$

- Find the minimum analytically.

Effective when it can be done (e.g., for linear regression).

- Find the minimum iteratively.

Works for larger classes of problems.
Gradient descent:

$$
w_{i} \leftarrow w_{i}-\eta \frac{\partial}{\partial w_{i}} \operatorname{Error}(E, \bar{w})
$$

η is the gradient descent step size, the learning rate.

- Often update weights after each example:
- incremental gradient descent updates parameters after each example
- stochastic gradient descent updates parameters after a batch of (randomly selected) examples
Often much faster than updating weights after sweeping through examples, but may not converge to a local optimum

Linear Classifier

- Assume you are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).

Linear Classifier

- Assume you are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

Linear Classifier

- Assume you are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

- A simple activation function is the step function:

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Cannot be used in gradient descent because

Linear Classifier

- Assume you are doing binary classification, with classes $\{0,1\}$ (e.g., using indicator functions).
- There is no point in making a prediction of less than 0 or greater than 1.
- A squashed linear function is of the form:

$$
f^{\bar{w}}\left(X_{1}, \ldots, X_{n}\right)=f\left(w_{0}+w_{1} X_{1}+\cdots+w_{n} X_{n}\right)
$$

where f is an activation function.

- A simple activation function is the step function:

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Cannot be used in gradient descent because it has a derivative of 0 almost everywhere (except at 0)

The sigmoid or logistic activation function

The sigmoid or logistic activation function

A logistic function is the sigmoid of a linear function.
Logistic regression: find weights to minimize log loss of a logistic function.

Error for Squashed Linear Function

When the domain of target Y is $\{0,1\}$:

- $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.
- $\delta(e)=Y(e)-\widehat{\gamma}^{\bar{w}}(e)$

Error for Squashed Linear Function

When the domain of target Y is $\{0,1\}$:

> - $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.
> - $\delta(e)=Y(e)-\widehat{Y}^{\bar{w}}(e)$

A natural measure for sigmoid is log loss:

$$
\begin{aligned}
& L L(E, \bar{w})=\sum_{e \in E} Y(e) * \log \widehat{Y}(e)+(1-Y(e)) * \log (1-\widehat{Y}(e)) \\
& \frac{\partial}{\partial w_{i}} L L(E, \bar{w})=
\end{aligned}
$$

Error for Squashed Linear Function

When the domain of target Y is $\{0,1\}$:

> - $\widehat{Y}(e)=\operatorname{sigmoid}\left(\sum_{i=0}^{n} w_{i} * X_{i}(e)\right)$.
> - $\delta(e)=Y(e)-\widehat{Y}^{\bar{w}}(e)$

A natural measure for sigmoid is log loss:

$$
\begin{aligned}
& L L(E, \bar{w})=\sum_{e \in E} Y(e) * \log \widehat{Y}(e)+(1-Y(e)) * \log (1-\widehat{Y}(e)) \\
& \frac{\partial}{\partial w_{i}} L L(E, \bar{w})=\sum_{e \in E} \delta(e) * X_{i}(e)
\end{aligned}
$$

Linear Learner with Stochastic Gradient Descent

1 :
2 :
Examples: Es. Learning rate: η. Batch size: b
3: initialize w_{0}, \ldots, w_{n} randomly
4: \quad define $\operatorname{pred}(e)=\phi\left(\sum_{i} w_{i} * X_{i}(e)\right)$
5 :
6:
7:
8:
9:
procedure Linear_learner $(X s, Y, E s, \eta, b)$

- Input features: $X s=\left\{X_{1}, \ldots, X_{n}\right\}$. Target feature: Y.
repeat
for each $i \in[0, n]$ do $\mathrm{d}[\mathrm{i}]:=0$
select batch $B \subseteq E s$ of size b
for each example e in B do

$$
\text { error }:=\operatorname{pred}(e)-Y(e)
$$

for each $i \in[0, n]$ do

$$
d_{i}:=d_{i}+\text { error } * X_{i}(e)
$$

for each $i \in[0, n]$ do

$$
w_{i}:=w_{i}-\eta * d_{i} / b
$$

until termination
return pred

Simple Example

Ex	new	short	home	reads		δ	SSE
				Predicted	Obs		
e1	0	0	0	$f(0.4) \approx 0.6$	0	-0.6	0.36
e2	1	1	0		0		
e3	1	0	1		1		

Simple Example

Ex	new	short	home	reads		δ	SSE
				Predicted	Obs		
e1	0	0	0	$f(0.4) \approx 0.6$	0	-0.6	0.36
e2	1	1	0	$f(-1.2) \approx 0.23$	0		
e3	1	0	1	$f(0.9) \approx 0.71$	1		

Simple Example

Ex	new	short	home	reads		δ	SSE
				Predicted	Obs		
e1	0	0	0	$f(0.4) \approx 0.6$	0	-0.6	0.36
e2	1	1	0	$f(-1.2) \approx 0.23$	0	-0.23	0.053
e3	1	0	1	$f(0.9) \approx 0.71$	1	0.29	0.084

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

$$
w_{0}+w_{1} * X_{1}+\cdots+w_{n} * X_{n}=0
$$

This separates the predictions >0.5 and <0.5.

- linearly separable implies the error can be arbitrarily small

Linearly Separable

- A classification is linearly separable if there is a hyperplane where the classification is true on one side of the hyperplane and false on the other side.
- For the sigmoid function, the hyperplane is when:

$$
w_{0}+w_{1} * X_{1}+\cdots+w_{n} * X_{n}=0
$$

This separates the predictions >0.5 and <0.5.

- linearly separable implies the error can be arbitrarily small

Kernel Trick: use functions of input features (e.g., product)

Variants in Linear Separators

Which linear separator to use can result in various algorithms:

- Perceptron
- Logistic Regression
- Support Vector Machines (SVMs)
- ...

Bias in linear classifiers and decision trees

- It's easy for a logistic function to represent "at least two of X_{1}, \ldots, X_{k} are true":

$$
\begin{array}{llll}
w_{0} & w_{1} & \cdots & w_{k} \\
\hline
\end{array}
$$

Bias in linear classifiers and decision trees

- It's easy for a logistic function to represent "at least two of X_{1}, \ldots, X_{k} are true":

w_{0}	w_{1}	\cdots	w_{k}
-15	10	\cdots	10

This concept forms a large decision tree.

- Consider representing a conditional: "If X_{7} then X_{2} else X_{3} ":
- Simple in a decision tree.
- For a linear separator

Bias in linear classifiers and decision trees

- It's easy for a logistic function to represent "at least two of X_{1}, \ldots, X_{k} are true":

w_{0}	w_{1}	\cdots	w_{k}
-15	10	\cdots	10

This concept forms a large decision tree.

- Consider representing a conditional: "If X_{7} then X_{2} else X_{3} ":
- Simple in a decision tree.
- For a linear separator it is impossible to represent as it is not linearly separable

