
Learning Objectives

At the end of the class you should be able to:

show how decision-tree learning works on small examples

explain the relationship between linear and logistic regression

explain the updates of stochastic gradient descent
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Basic Models for Supervised Learning

Many learning algorithms can be seen as deriving from:

decision trees

linear (and non-linear) classifiers
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Learning Decision Trees

Representation is a decision tree.

Bias is towards simple decision trees.

Search through the space of decision trees, from simple
decision trees to more complex ones.
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Decision trees

A (binary) decision tree (for a particular target feature) is a tree
where:

each internal (non-leaf) node is labeled with a condition, a
Boolean function of examples, built using input features

each internal node has two branches, one labeled true and the
other false

each leaf of the tree is labeled with a point estimate of the
target feature.

Decision trees are also called classification trees when the target is
discrete, and regression trees when the target is real-valued.

Like an if–then–else structure in a programming language.
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Example Classification Data

Training Examples:

Action Author Thread Length Where

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work

New Examples:

e7 ??? known new short work
e8 ??? unknown new short work

We want to classify new examples on feature Action based on the
examples’ Author , Thread , Length, and Where.
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Example Decision Trees

knownunknown

follow_upnew

shortlong

Length

Thread

Author

skips

reads

skips reads

shortlong

Length

reads with 
probability 0.82

skips
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Equivalent Programs

define action(e):
if long(e): return skips
else if new(e): return reads
else if unknown(e): return skips
else: return reads

Logic Program:

reads(E )← short(E ) ∧ new(E ).

reads(E )← short(E ) ∧ follow up(E ) ∧ known(E ).

skips(E )← long(E ).

skips(E )← short(E ) ∧ follow up(E ) ∧ unknown(E ).

or with negation as failure:

reads ← short ∧ new .

reads ← short ∧ ∼new ∧ known.

or as a logical fromula: reads ↔ short ∧ (new ∨ known)
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Issues in decision-tree learning

Given some training examples, which decision tree should be
generated?

A decision tree can represent any discrete function of the
input features.

You need a bias. Example, prefer the smallest tree.
Least depth? Fewest nodes? Which trees are the best
predictors of unseen data?

How should you go about building a decision tree? The space
of decision trees is too big for systematic search for the
smallest decision tree.
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Searching for a Good Decision Tree

The input is a set of input features, a target feature and, a set
of training examples.

Either:
▶ Stop and return a value for the target feature or a distribution

over target feature values
▶ Choose a condition (e.g. an input feature) to split on.

build a subtree for those examples with with the condition true
and the examples with the condition false.
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Choices in implementing the algorithm

When to stop:

▶ no more input features
▶ all examples are classified the same
▶ too few examples to make an informative split
▶ no split give an appreciable improvement in error

Which test to split on isn’t defined. Often we use myopic
split: which single split gives smallest error?
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Decision tree learner

1: procedure DT learner(Cs,Y ,Es, γ)
2: Inputs Cs: set of possible conditions; Y : target feature;

Es: training examples; γ: improvement threshold

3: Output function to predict a value of Y for an example
4: c := select split(Es,Cs, γ) ▷ see next slide
5: if c = None then ▷ stopping criterion is true
6: v := leaf prediction(Y ,Es) ▷ Prediction on Y
7: define T (e) = v
8: return T
9: else

10: true examples := {e ∈ Es : c(e)}
11: t1 := DT learner(Cs \ {c},Y , true examples, γ)
12: false examples := {e ∈ Es : ¬c(e)}
13: t0 := DT learner(Cs \ {c},Y , false examples, γ)
14: define T (e) = if c(e) then t1(e) else t0(e)
15: return T
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1: procedure select split(Es,Y ,Cs, γ)
2: best val := sum loss(Y ,Es)− γ
3: best split := None
4: for c ∈ Cs do
5: val := sum loss(Y , {e ∈ Es | c(e)})
6: + sum loss(Y , {e ∈ Es | ¬c(e)})
7: if val < best val then
8: best val := val
9: best split := c

10: return best split

For log loss: Prediction is empirical proportion of Y value

P = leaf prediction(Y ,Es) : v 7→ |{e′∈Es:Y (e)=v}|
|Es|

sum loss(Y ,Es) =
∑
e∈Es

log(P(Y (e)))
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Example Classification Data

Training Examples:

Action Author Thread Length Where

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work

New Examples:

e7 ??? known new short work
e8 ??? unknown new short work

Aim: classify new examples on feature Action based on the
examples’ Author , Thread , Length, and Where.
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Example: possible splits

length

long short

skips 7
reads 0

skips 2
reads 9

skips 9
reads 9

thread

new old

skips 3
reads 7

skips 6
reads 2

skips 9
reads 9
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Handling Overfitting

This algorithm can overfit the data.
This occurs when

noise and correlations in the training set
that are not reflected in the data as a whole.

To handle overfitting:
▶ restrict the splitting, and split only when the split is useful.
▶ allow unrestricted splitting and prune the resulting tree where

it makes unwarranted distinctions.
▶ learn multiple trees and average them (decision forests,

random forests)
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Linear Function

A linear function of features X1, . . . ,Xn is a function of the form:

f w (X1, . . . ,Xn) = w0 + w1X1 + · · ·+ wnXn

Invent a new feature X0 which has value 1, to make it not a
special case.

f w (X1, . . . ,Xn) =
n∑

i=0

wiXi
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Linear Regression

Aim: predict feature Y from features X1, . . . ,Xn.

A feature is a function of an example.
Xi (e) is the value of feature Xi on example e.

Linear regression: predict a linear function of the input
features.

Ŷ w (e) = w0 + w1X1(e) + · · ·+ wnXn(e)

=
n∑

i=0

wiXi (e) ,

Ŷ w (e) is the predicted value for Y on example e.
It depends on the weights w .
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Sum of squares error for linear regression

The sum of squares error on examples E for target Y is:

SSE (E ,w) =
∑
e∈E

(Y (e)− Ŷ w (e))2

=
∑
e∈E

(
Y (e)−

n∑
i=0

wi ∗ Xi (e)

)2

.

Goal: given examples E , find weights that minimize SSE (E ,w).
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Finding weights that minimize Error(E ,w)

Find the minimum analytically.
Effective when it can be done (e.g., for linear regression).

Find the minimum iteratively.
Works for larger classes of problems.
Gradient descent:

wi ← wi − η
∂

∂wi
Error(E ,w)

η is the gradient descent step size, the learning rate.

Often update weights after each example:
— incremental gradient descent updates parameters after
each example
— stochastic gradient descent updates parameters after a
batch of (randomly selected) examples
Often much faster than updating weights after sweeping
through examples, but may not converge to a local optimum
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Linear Classifier

Assume you are doing binary classification, with classes {0, 1}
(e.g., using indicator functions).

There is no point in making a prediction of less than 0 or
greater than 1.

A squashed linear function is of the form:

f w (X1, . . . ,Xn) = f (w0 + w1X1 + · · ·+ wnXn)

where f is an activation function.

A simple activation function is the step function:

f (x) =

{
1 if x ≥ 0
0 if x < 0

Cannot be used in gradient descent because it has a derivative of 0
almost everywhere (except at 0)
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The sigmoid or logistic activation function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

f (x) =
1

1 + e−x

f ′(x) = f (x)(1− f (x))

A logistic function is the sigmoid of a linear function.
Logistic regression: find weights to minimize log loss of a logistic
function.
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Error for Squashed Linear Function

When the domain of target Y is {0, 1}:
Ŷ (e) = sigmoid (

∑n
i=0 wi ∗ Xi (e)).

δ(e) = Y (e)− Ŷ w (e)

A natural measure for sigmoid is log loss:

LL(E ,w) =
∑
e∈E

Y (e) ∗ log Ŷ (e) + (1− Y (e)) ∗ log(1− Ŷ (e))

∂

∂wi
LL(E ,w) =

∑
e∈E

δ(e) ∗ Xi (e)
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Linear Learner with Stochastic Gradient Descent

1: procedure Linear learner(Xs,Y ,Es, η, b)
2: • Input features: Xs = {X1, . . . ,Xn}. Target feature: Y .

Examples: Es. Learning rate: η. Batch size: b
3: initialize w0, . . . ,wn randomly
4: define pred(e) = ϕ(

∑
i wi ∗ Xi (e))

5: repeat
6: for each i ∈ [0, n] do d[i] := 0

7: select batch B ⊆ Es of size b
8: for each example e in B do
9: error := pred(e)− Y (e)

10: for each i ∈ [0, n] do
11: di := di + error ∗ Xi (e)

12: for each i ∈ [0, n] do
13: wi := wi − η ∗ di/b
14: until termination
15: return pred
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Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads δ SSE
Predicted Obs

e1 0 0 0 f (0.4) ≈ 0.6 0 −0.6 0.36
e2 1 1 0

f (−1.2) ≈ 0.23

0

−0.23 0.053

e3 1 0 1

f (0.9) ≈ 0.71

1

0.29 0.084

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.3 24 / 27



Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads δ SSE
Predicted Obs

e1 0 0 0 f (0.4) ≈ 0.6 0 −0.6 0.36
e2 1 1 0 f (−1.2) ≈ 0.23 0

−0.23 0.053

e3 1 0 1 f (0.9) ≈ 0.71 1

0.29 0.084

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.3 24 / 27



Simple Example

new short home

reads

-0.7 -0.9 1.2

0.4

Ex new short home reads δ SSE
Predicted Obs

e1 0 0 0 f (0.4) ≈ 0.6 0 −0.6 0.36
e2 1 1 0 f (−1.2) ≈ 0.23 0 −0.23 0.053
e3 1 0 1 f (0.9) ≈ 0.71 1 0.29 0.084

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 7.3 24 / 27



Linearly Separable

A classification is linearly separable if there is a hyperplane
where the classification is true on one side of the hyperplane
and false on the other side.

For the sigmoid function, the hyperplane is when:

w0 + w1 ∗ X1 + · · ·+ wn ∗ Xn = 0

This separates the predictions > 0.5 and < 0.5.

linearly separable implies the error can be arbitrarily small
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Kernel Trick: use functions of input features (e.g., product)
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and false on the other side.

For the sigmoid function, the hyperplane is when:

w0 + w1 ∗ X1 + · · ·+ wn ∗ Xn = 0

This separates the predictions > 0.5 and < 0.5.

linearly separable implies the error can be arbitrarily small
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Variants in Linear Separators

Which linear separator to use can result in various algorithms:

Perceptron

Logistic Regression

Support Vector Machines (SVMs)

. . .
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Bias in linear classifiers and decision trees

It’s easy for a logistic function to represent
“at least two of X1, . . . ,Xk are true”:

w0 w1 · · · wk

-15 10 · · · 10

This concept forms a large decision tree.

Consider representing a conditional:
“If X7 then X2 else X3”:
▶ Simple in a decision tree.
▶ For a linear separator it is impossible to represent as it is not

linearly separable
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