# Learning Objectives

At the end of the class you should be able to:

- identify a supervised learning problem
- characterize how the prediction is a function of the error measure
- avoid mixing the training and test sets



# Supervised Learning

#### Given:

- a set of inputs features  $X_1, \ldots, X_n$
- a set of target features  $Y_1, \ldots, Y_k$
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given

predict the values for the target features for the new example.

- $\bullet$  classification when the  $Y_i$  are discrete
- regression when the  $Y_i$  are continuous



## Example Data Representations

A travel agent wants to predict the preferred length of a trip, which can be from  $1\ \text{to}\ 6$  days. (No input features).

Two representations of the same data:

- *Y* is the length of trip chosen.
- Each  $Y_i$  is an indicator variable that has value 1 if the chosen length is i, and is 0 otherwise.

| Example | Y | Example               | $Y_1$ | $Y_2$ | $Y_3$ | $Y_4$ | $Y_5$ | $Y_6$ |
|---------|---|-----------------------|-------|-------|-------|-------|-------|-------|
| $e_1$   | 1 | $e_1$                 | 1     | 0     | 0     | 0     | 0     | 0     |
| $e_2$   | 6 | $e_2$                 | 0     | 0     | 0     | 0     | 0     | 1     |
| $e_3$   | 6 | <i>e</i> <sub>3</sub> | 0     | 0     | 0     | 0     | 0     | 1     |
| $e_4$   | 2 | <i>e</i> <sub>4</sub> | 0     | 1     | 0     | 0     | 0     | 0     |
| $e_5$   | 1 | $e_5$                 | 1     | 0     | 0     | 0     | 0     | 0     |

What is a prediction?

# **Evaluating Predictions**

Suppose we want to make a prediction of a value for a target feature on example *e*:

- $\bullet$   $o_e$  is the observed value of target feature on example e.
- $p_e$  is the predicted value of target feature on example e.
- The error of the prediction is a measure of how close  $p_e$  is to  $o_e$ .
- There are many possible errors that could be measured.

Sometimes  $p_e$  can be a real number even though  $o_e$  can only have a few values.



### Measures of error

*E* is a sequence of examples, with single target feature. For  $e \in E$ ,  $o_e$  is observed value and  $p_e$  is predicted value:

- absolute error  $L_1(E) = \sum_{e \in E} |o_e p_e|$
- sum of squares error  $L^2_2(E) = \sum_{e \in E} (o_e p_e)^2$
- worst-case error:  $L_{\infty}(E) = \max_{e \in E} |o_e p_e|$
- number wrong:  $L_0(E) = \#\{e : o_e \neq p_e\}$
- A cost-based error takes into account costs of errors.



# Measures of error (cont.)

With binary feature:  $o_e \in \{0, 1\}$ :

likelihood of the data

$$\prod_{e \in E} p_e^{o_e} (1 - p_e)^{(1 - o_e)}$$

log likelihood

$$\sum_{e \in E} \left(o_e \log p_e + (1 - o_e) \log(1 - p_e)\right)$$

in terms of information:

It is negative of number of bits to encode the data given a code based on  $p_e$ .



# Information theory overview

- A bit is a binary digit.
- 1 bit can distinguish 2 items
- k bits can distinguish 2<sup>k</sup> items
- n items can be distinguished using  $\log_2 n$  bits
- Can we do better?

### Information and Probability

Consider a code to distinguish elements of  $\{a, b, c, d\}$  with

$$P(a) = \frac{1}{2}, P(b) = \frac{1}{4}, P(c) = \frac{1}{8}, P(d) = \frac{1}{8}$$

Consider the code:

This code uses 1 to 3 bits. On average, it uses

$$P(a) \times 1 + P(b) \times 2 + P(c) \times 3 + P(d) \times 3$$
  
=  $\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{3}{8} = 1\frac{3}{4}$  bits.

The string aacabbda has code 00110010101110.

The code 0111110010100 represents string adcabba



### Information Content

- To identify x, we need  $-\log_2 P(x)$  bits.
- Give a distribution over a set, to a identify a member, the expected number of bits

$$\sum_{x} -P(x) \times \log_2 P(x).$$

is the information content or entropy of the distribution.

 The expected number of bits it takes to describe a distribution given evidence e:

$$I(e) = \sum_{x} -P(x|e) \times \log_2 P(x|e).$$



### Information Gain

Given a test that can distinguish the cases where  $\alpha$  is true from the cases where  $\alpha$  is false, the information gain from this test is:

$$I(true) - (P(\alpha) \times I(\alpha) + P(\neg \alpha) \times I(\neg \alpha)).$$

- I(true) is the expected number of bits needed before the test
- $P(\alpha) \times I(\alpha) + P(\neg \alpha) \times I(\neg \alpha)$  is the expected number of bits after the test.



### **Linear Predictions**





### **Linear Predictions**





### Point Estimates

Predict single value for numerical feature Y on examples E.

- The prediction that minimizes the sum of squares error on E
  is the mean (average) value of Y.
- The prediction that minimizes the absolute error on *E* is the median value of *Y*.
- The prediction that minimizes the number wrong on E is the mode of Y.
- The prediction that minimizes the worst-case error on E is (maximum + minimum)/2
- When Y has values  $\{0,1\}$ , the prediction that maximizes the likelihood on E is the empirical frequency.
- When Y has values  $\{0,1\}$ , the prediction that minimizes the entropy on E is the empirical frequency.

But that doesn't mean that these predictions minimize the error for future predictions....



# Training and Test Sets

To evaluate how well a learner will work on future predictions, we divide the examples into:

- training examples that are used to train the learner
- test examples that are used to evaluate the learner

...these must be kept separate.