## Learning Objectives

At the end of the class you should be able to:

- identify a supervised learning problem
- characterize how the prediction is a function of the error measure
- avoid mixing the training and test sets


## Supervised Learning

Given:

- a set of inputs features $X_{1}, \ldots, X_{n}$
- a set of target features $Y_{1}, \ldots, Y_{k}$
- a set of training examples where the values for the input features and the target features are given for each example
- a new example, where only the values for the input features are given
predict the values for the target features for the new example.
- classification when the $Y_{i}$ are discrete
- regression when the $Y_{i}$ are continuous


## Example Data Representations

A travel agent wants to predict the preferred length of a trip, which can be from 1 to 6 days. (No input features).
Two representations of the same data:

- $Y$ is the length of trip chosen.
- Each $Y_{i}$ is an indicator variable that has value 1 if the chosen length is $i$, and is 0 otherwise.

| Example | $Y$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | Example | $Y_{1}$ | $Y_{2}$ | $Y_{3}$ | $Y_{4}$ | $Y_{5}$ |
| $e_{1}$ | $e_{1}$ | 1 | 0 | 0 | $Y_{6}$ |  |  |  |
| $e_{2}$ | 6 |  | $e_{2}$ | 0 | 0 | 0 | 0 | 0 |
| $e_{3}$ | 6 |  | $e_{3}$ | 0 | 0 | 0 | 0 | 0 |
| $e_{4}$ | 2 |  | $e_{4}$ | 0 | 1 | 0 | 0 | 0 |
| $e_{5}$ | 1 |  | $e_{5}$ | 1 | 0 | 0 | 0 | 0 |

What is a prediction?

## Evaluating Predictions

Suppose we want to make a prediction of a value for a target feature on example $e$ :

- $o_{e}$ is the observed value of target feature on example $e$.
- $p_{e}$ is the predicted value of target feature on example $e$.
- The error of the prediction is a measure of how close $p_{e}$ is to $O_{e}$.
- There are many possible errors that could be measured.

Sometimes $p_{e}$ can be a real number even though $o_{e}$ can only have a few values.

## Measures of error

$E$ is a sequence of examples, with single target feature. For $e \in E$, $o_{e}$ is observed value and $p_{e}$ is predicted value:

- absolute error $L_{1}(E)=\sum_{e \in E}\left|o_{e}-p_{e}\right|$
- sum of squares error $L_{2}^{2}(E)=\sum_{e \in E}\left(o_{e}-p_{e}\right)^{2}$
- worst-case error: $L_{\infty}(E)=\max _{e \in E}\left|o_{e}-p_{e}\right|$
- number wrong: $L_{0}(E)=\#\left\{e: o_{e} \neq p_{e}\right\}$
- A cost-based error takes into account costs of errors.


## Measures of error (cont.)

With binary feature: $o_{e} \in\{0,1\}$ :

- likelihood of the data

$$
\prod_{e \in E} p_{e}^{O_{e}}\left(1-p_{e}\right)^{\left(1-o_{e}\right)}
$$

- log likelihood

$$
\sum_{e \in E}\left(o_{e} \log p_{e}+\left(1-o_{e}\right) \log \left(1-p_{e}\right)\right)
$$

in terms of information:
It is negative of number of bits to encode the data given a code based on $p_{e}$.

## Information theory overview

- A bit is a binary digit.
- 1 bit can distinguish 2 items
- $k$ bits can distinguish $2^{k}$ items
- $n$ items can be distinguished using $\log _{2} n$ bits
- Can we do better?


## Information and Probability

Consider a code to distinguish elements of $\{a, b, c, d\}$ with

$$
P(a)=\frac{1}{2}, P(b)=\frac{1}{4}, P(c)=\frac{1}{8}, P(d)=\frac{1}{8}
$$

Consider the code:

$$
\begin{array}{llllllll}
a & 0 & b & 10 & c & 110 & d & 111
\end{array}
$$

This code uses 1 to 3 bits. On average, it uses

$$
\begin{aligned}
& P(a) \times 1+P(b) \times 2+P(c) \times 3+P(d) \times 3 \\
& \quad=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{3}{8}=1 \frac{3}{4} \text { bits. }
\end{aligned}
$$

The string aacabbda has code 00110010101110.
The code 0111110010100 represents string adcabba

## Information Content

- To identify $x$, we need $-\log _{2} P(x)$ bits.
- Give a distribution over a set, to a identify a member, the expected number of bits

$$
\sum_{x}-P(x) \times \log _{2} P(x)
$$

is the information content or entropy of the distribution.

- The expected number of bits it takes to describe a distribution given evidence $e$ :

$$
I(e)=\sum_{x}-P(x \mid e) \times \log _{2} P(x \mid e) .
$$

## Information Gain

Given a test that can distinguish the cases where $\alpha$ is true from the cases where $\alpha$ is false, the information gain from this test is:

$$
I(\text { true })-(P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha))
$$

- $I($ true $)$ is the expected number of bits needed before the test
- $P(\alpha) \times I(\alpha)+P(\neg \alpha) \times I(\neg \alpha)$ is the expected number of bits after the test.


## Linear Predictions



## Linear Predictions



## Point Estimates

Predict single value for numerical feature $Y$ on examples $E$.

- The prediction that minimizes the sum of squares error on $E$ is the mean (average) value of $Y$.
- The prediction that minimizes the absolute error on $E$ is the median value of $Y$.
- The prediction that minimizes the number wrong on $E$ is the mode of $Y$.
- The prediction that minimizes the worst-case error on $E$ is (maximum + minimum) $/ 2$
- When $Y$ has values $\{0,1\}$, the prediction that maximizes the likelihood on $E$ is the empirical frequency.
- When $Y$ has values $\{0,1\}$, the prediction that minimizes the entropy on $E$ is the empirical frequency.
But that doesn't mean that these predictions minimize the error for future predictions....


## Training and Test Sets

To evaluate how well a learner will work on future predictions, we divide the examples into:

- training examples that are used to train the learner
- test examples that are used to evaluate the learner ...these must be kept separate.

