- A primitive atom is an atom that is defined using facts.
- A derived atom is an atom that is defined using rules.
- Typically, the designer writes axioms for the derived atoms and then expects a user to specify which primitive atoms are true.

- They can both be primitive, as in the knowledge base:
 - a.
 - b.

- They can both be primitive, as in the knowledge base:
 - a.
 - b.
- Atom a can be primitive, and b derived:
 - a.
 - $b \leftarrow a$.

- They can both be primitive, as in the knowledge base:
 - a.
 - b.
- Atom a can be primitive, and b derived:
 - a.
 - $b \leftarrow a$.
- Atom a can be derived, and b primitive:
 - $a \leftarrow b$.
 - b.

- They can both be primitive, as in the knowledge base:
 - a.
 - b.
- Atom a can be primitive, and b derived:
 - a.
 - $b \leftarrow a$.
- Atom a can be derived, and b primitive:
 - $a \leftarrow b$.
 - b.
- Can they both be derived?
 - $a \leftarrow b$.
 - $b \leftarrow a$.

- They can both be primitive, as in the knowledge base:
 - a.
 - b.
- Atom a can be primitive, and b derived:
 - a.
 - $b \leftarrow a$.
- Atom a can be derived, and b primitive:
 - $a \leftarrow b$.
 - b.
- Can they both be derived?
 - $a \leftarrow b$.
 - $b \leftarrow a$.
- What if the world changes to make a no longer true?
 What happens to b?

• A causal model is a representation of a domain that predicts the results of interventions.

- A causal model is a representation of a domain that predicts the results of interventions.
- An intervention is an action that forces a variable (proposition) to have a particular value.
- An intervention on a variable changes the value of the variable in some way other than as a side-effect of manipulating other variables in the model.

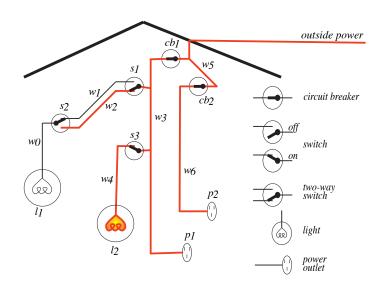
- A causal model is a representation of a domain that predicts the results of interventions.
- An intervention is an action that forces a variable (proposition) to have a particular value.
- An intervention on a variable changes the value of the variable in some way other than as a side-effect of manipulating other variables in the model.
- Other variables may be affected by an intervention on a variable.

- A causal model is a representation of a domain that predicts the results of interventions.
- An intervention is an action that forces a variable (proposition) to have a particular value.
- An intervention on a variable changes the value of the variable in some way other than as a side-effect of manipulating other variables in the model.
- Other variables may be affected by an intervention on a variable.
- A structural causal model defines a causal mechanism for each atom. This causal mechanism specifies when the atom is true in terms of other atoms.

- A causal model is a representation of a domain that predicts the results of interventions.
- An intervention is an action that forces a variable (proposition) to have a particular value.
- An intervention on a variable changes the value of the variable in some way other than as a side-effect of manipulating other variables in the model.
- Other variables may be affected by an intervention on a variable.
- A structural causal model defines a causal mechanism for each atom. This causal mechanism specifies when the atom is true in terms of other atoms.
- If the model is manipulated to make an atom true or false, the clauses for that atom are replaced by the atomic fact or are removed.

3/6

Electrical Environment



Combining Evidential & Causal Reasoning

$$lit_{-}l_{1} \leftrightarrow (up_{-}s_{1} \leftrightarrow up_{-}s_{2}) \tag{1}$$

is logically equivalent to

$$up_s_1 \leftrightarrow (lit_l_1 \leftrightarrow up_s_2).$$

This formula is symmetric between the three propositions; it is true if and only if an even number of the propositions are false.

Combining Evidential & Causal Reasoning

$$lit_{-}l_{1} \leftrightarrow (up_{-}s_{1} \leftrightarrow up_{-}s_{2}) \tag{1}$$

is logically equivalent to

$$up_s_1 \leftrightarrow (lit_l_1 \leftrightarrow up_s_2).$$

This formula is symmetric between the three propositions; it is true if and only if an even number of the propositions are false.

- The relationship between these propositions is **not** symmetric:
 - Suppose both switches were up and the light was lit.
 - Putting s_1 down does not make s_2 go down to preserve lit_-l_1 .
 - Putting s_1 down makes lit_l_1 false, and up_s_2 remains true.

Combining Evidential & Causal Reasoning

$$lit_{-}l_{1} \leftrightarrow (up_{-}s_{1} \leftrightarrow up_{-}s_{2}) \tag{1}$$

is logically equivalent to

$$up_s_1 \leftrightarrow (lit_l_1 \leftrightarrow up_s_2).$$

This formula is symmetric between the three propositions; it is true if and only if an even number of the propositions are false.

- The relationship between these propositions is **not** symmetric:
 - Suppose both switches were up and the light was lit.
 - ▶ Putting s_1 down does not make s_2 go down to preserve lit_-l_1 .
 - Putting s_1 down makes lit_l_1 false, and up_s_2 remains true.
- Structural causal model:

$$lit_l_1 \leftrightarrow (up_s_1 \leftrightarrow up_s_2)$$

$$up_s_1$$

$$\neg up_s_2$$

Structural causal model as logic program

• Structural causal model:

$$\begin{aligned} & lit_l_1 \leftrightarrow (up_s_1 \leftrightarrow up_s_2) \\ & up_s_1 \\ & \neg up_s_2 \end{aligned}$$

• As a logic program using negation as failure:

$$\begin{split} & \mathit{lit_I_1} \leftarrow \mathit{up_s_1} \land \mathit{up_s_2}. \\ & \mathit{lit_I_1} \leftarrow \sim \mathit{up_s_1} \land \sim \mathit{up_s_2}. \\ & \mathit{up_s_1}. \end{split}$$

Structural causal model as logic program

Structural causal model:

$$\begin{aligned} & \textit{lit_I}_1 \leftrightarrow (\textit{up_s}_1 \leftrightarrow \textit{up_s}_2) \\ & \textit{up_s}_1 \\ & \neg \textit{up_s}_2 \end{aligned}$$

As a logic program using negation as failure:

$$\begin{split} & \mathit{lit_I_1} \leftarrow \mathit{up_s_1} \land \mathit{up_s_2}. \\ & \mathit{lit_I_1} \leftarrow \sim \mathit{up_s_1} \land \sim \mathit{up_s_2}. \\ & \mathit{up_s_1}. \end{split}$$

An evidential model

$$up_s_1 \leftarrow lit_l_1 \land up_s_2.$$

 $up_s_1 \leftarrow \sim lit_l_1 \land \sim up_s_2$

can be used to answer questions about whether s_1 is up based on the position of s_2 and whether l_1 is lit.

It does not accurately predict the effect of interventions.

