
Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.
Everything not known to be true is false.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous
conclusion.

The complete knowledge assumption is sometimes called the
closed world assumption.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 1 / 11



Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalent logical formula a← b1 ∨ . . . ∨ bn.
“a is true if b1 or . . . or bn”

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn

“a is true if and only if b1 or . . . or bn”

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 2 / 11



Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalent logical formula a← b1 ∨ . . . ∨ bn.
“a is true if b1 or . . . or bn”

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn

“a is true if and only if b1 or . . . or bn”

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 2 / 11



Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalent logical formula a← b1 ∨ . . . ∨ bn.
“a is true if b1 or . . . or bn”

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn

“a is true if and only if b1 or . . . or bn”

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 2 / 11



Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every atom.

An atom h with no clauses, has the completion

h↔ false.
“h is false”.

You can interpret negations in the body of clauses.

∼h

means that h is false under the complete knowledge
assumption
This is negation as failure.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 3 / 11



Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every atom.

An atom h with no clauses, has the completion
h↔ false.
“h is false”.

You can interpret negations in the body of clauses.

∼h

means that h is false under the complete knowledge
assumption
This is negation as failure.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 3 / 11



Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every atom.

An atom h with no clauses, has the completion
h↔ false.
“h is false”.

You can interpret negations in the body of clauses.

∼h

means that h is false under the complete knowledge
assumption
This is negation as failure.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 3 / 11



Electrical Environment (elect naf.pl)

Idea: only represent up and use \+ up instead of down

Easier to specify

Less error prone (exactly one must be true)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 4 / 11



Negation as failure example (naf.pl)

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 5 / 11



Bottom-up negation as failure interpreter

C := {}
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C

C := C ∪ {h}

or
select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB

either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 6 / 11



Bottom-up negation as failure interpreter

C := {}
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 6 / 11



Negation as failure example

p ← q ∧ ∼r .
p ← s.

q ← ∼s.
r ← ∼t.
t.

s ← w .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 7 / 11



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.

A body fails if one of the conjuncts in the body fails.

If there are no rules for h then h fails

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 8 / 11



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.

If there are no rules for h then h fails

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 8 / 11



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.

If there are no rules for h

then h fails

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 8 / 11



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.

If there are no rules for h then h fails

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 8 / 11



Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.
Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.

If there are no rules for h then h fails

Note that you need finite failure. Example p ← p.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 8 / 11



Default Reasoning

When giving information, we don’t want to enumerate all of
the exceptions, even if we could think of them all.

In default reasoning, we specify general knowledge and
modularly add exceptions. The general knowledge is used for
cases we don’t know are exceptional.

Classical logic is monotonic: If g logically follows from A, it
also follows from any superset of A.

Default reasoning is nonmonotonic: When we add that
something is exceptional, we can’t conclude what we could
before.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 9 / 11



Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.

A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Example: default reasoning about resorts (beach.pl)

A resort is on the beach or away from the beach.
A resort is away from the beach unless it says it is on a beach.

away from beach← ∼on beach.

If we are told the resort is on the beach, we would expect that
resort users would have access to the beach.
If they have access to a beach, we would expect them to be
able to swim at the beach.

beach access ← on beach ∧ ∼ab beach access.

swim at beach← beach access ∧ ∼ab swim at beach.

ab swim at beach← enclosed bay ∧ big city ∧ ∼ab no swim.

ab no swim← in BC ∧ ∼ab BC beaches.

See end of logicNegation.py in aipython.org or
https://artint.info/3e/resounces/ch05/beach.pl

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 10 / 11

https://artint.info/3e/resounces/ch05/beach.pl


Default Example

How can we represent

Birds fly.

Emus and tiny birds dont fly.

Hummingbirds are exceptional tiny birds.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 11 / 11



Default Example

How can we represent

Birds fly.

Emus and tiny birds dont fly.

Hummingbirds are exceptional tiny birds.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 11 / 11



Default Example

How can we represent

Birds fly.

Emus and tiny birds dont fly.

Hummingbirds are exceptional tiny birds.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.5 11 / 11


