• Often you want to assume that your knowledge is complete. Everything not known to be true is false.

- Often you want to assume that your knowledge is complete. Everything not known to be true is false.
- Example: you can state what switches are up and the agent can assume that the other switches are down.

- Often you want to assume that your knowledge is complete. Everything not known to be true is false.
- Example: you can state what switches are up and the agent can assume that the other switches are down.
- Example: assume that a database of what students are enrolled in a course is complete.

- Often you want to assume that your knowledge is complete. Everything not known to be true is false.
- Example: you can state what switches are up and the agent can assume that the other switches are down.
- Example: assume that a database of what students are enrolled in a course is complete.
- The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion.

- Often you want to assume that your knowledge is complete. Everything not known to be true is false.
- Example: you can state what switches are up and the agent can assume that the other switches are down.
- Example: assume that a database of what students are enrolled in a course is complete.
- The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion.
- Under the complete knowledge assumption, the system is non-monotonic: adding clauses can invalidate a previous conclusion.

- Often you want to assume that your knowledge is complete. Everything not known to be true is false.
- Example: you can state what switches are up and the agent can assume that the other switches are down.
- Example: assume that a database of what students are enrolled in a course is complete.
- The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion.
- Under the complete knowledge assumption, the system is non-monotonic: adding clauses can invalidate a previous conclusion.
- The complete knowledge assumption is sometimes called the closed world assumption.

< □

Completion of a knowledge base

• Suppose the rules for atom a are

 $a \leftarrow b_1$. : $a \leftarrow b_n$. equivalent logical formula $a \leftarrow b_1 \lor \ldots \lor b_n$. "a is true if b_1 or \ldots or b_n "

< □

• Suppose the rules for atom *a* are

 $a \leftarrow b_1.$: $a \leftarrow b_n.$ equivalent logical formula $a \leftarrow b_1 \lor \ldots \lor b_n.$ "a is true if b_1 or \ldots or b_n "

• Under the Complete Knowledge Assumption, if *a* is true, one of the *b_i* must be true:

 $a \rightarrow b_1 \vee \ldots \vee b_n$.

• Suppose the rules for atom *a* are

 $a \leftarrow b_1.$: $a \leftarrow b_n.$

equivalent logical formula $a \leftarrow b_1 \lor \ldots \lor b_n$. "a is true if b_1 or \ldots or b_n "

• Under the Complete Knowledge Assumption, if *a* is true, one of the *b_i* must be true:

 $a \rightarrow b_1 \vee \ldots \vee b_n$.

• Under the CKA, the clauses for *a* mean Clark's completion:

 $a \leftrightarrow b_1 \vee \ldots \vee b_n$

"a is true if and only if b_1 or ... or b_n "

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every atom.
- An atom h with no clauses, has the completion

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every atom.
- An atom h with no clauses, has the completion h ↔ false.
 "h is false".

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every atom.
- An atom h with no clauses, has the completion h ↔ false.
 "h is false".
- You can interpret negations in the body of clauses.

 $\sim h$

means that h is false under the complete knowledge assumption This is negation as failure.

< 🗆)

Idea: only represent up and use \+ up instead of down

- Easier to specify
- Less error prone (exactly one must be true)

 $p \leftarrow q \land \sim r.$ $p \leftarrow s.$ $q \leftarrow \sim s.$ $r \leftarrow \sim t.$ t. $s \leftarrow w.$

 $C := \{\}$ repeat either select $r \in KB$ such that r is " $h \leftarrow b_1 \land \ldots \land b_m$ " $b_i \in C$ for all i, and $h \notin C$ $C := C \cup \{h\}$

6/11

 $C := \{\}$ repeat either select $r \in KB$ such that r is " $h \leftarrow b_1 \land \ldots \land b_m$ " $b_i \in C$ for all *i*, and h∉ C $C := C \cup \{h\}$ or select *h* such that for every rule " $h \leftarrow b_1 \land \ldots \land b_m$ " $\in KB$ either for some $b_i, \sim b_i \in C$ or some $b_i = \sim g$ and $g \in C$ $C := C \cup \{\sim h\}$ until no more selections are possible

$$p \leftarrow q \land \sim r.$$

$$p \leftarrow s.$$

$$q \leftarrow \sim s.$$

$$r \leftarrow \sim t.$$

$$t.$$

$$s \leftarrow w.$$

- U

- If the proof for *a* fails, you can conclude $\sim a$.
- Failure can be defined recursively: Suppose you have rules for atom *a*:

 $a \leftarrow b_1$: $a \leftarrow b_n$ If each body b_i fails, a fails.

- If the proof for *a* fails, you can conclude $\sim a$.
- Failure can be defined recursively: Suppose you have rules for atom *a*:

```
a \leftarrow b_1
:
a \leftarrow b_n
If each body b_i fails, a fails.
A body fails if one of the conjuncts in the body fails.
```

- If the proof for *a* fails, you can conclude $\sim a$.
- Failure can be defined recursively: Suppose you have rules for atom *a*:

```
a \leftarrow b_1
:
a \leftarrow b_n
```

If each body b_i fails, *a* fails.

A body fails if one of the conjuncts in the body fails.

• If there are no rules for h

- If the proof for *a* fails, you can conclude $\sim a$.
- Failure can be defined recursively: Suppose you have rules for atom *a*:

```
a \leftarrow b_1
:
a \leftarrow b_n
```

If each body b_i fails, *a* fails.

A body fails if one of the conjuncts in the body fails.

• If there are no rules for h then h fails

- If the proof for *a* fails, you can conclude $\sim a$.
- Failure can be defined recursively: Suppose you have rules for atom *a*:

```
a \leftarrow b_1
:
a \leftarrow b_n
```

If each body b_i fails, a fails.

A body fails if one of the conjuncts in the body fails.

- If there are no rules for h then h fails
- Note that you need *finite* failure. Example $p \leftarrow p$.

< □

- When giving information, we don't want to enumerate all of the exceptions, even if we could think of them all.
- In default reasoning, we specify general knowledge and modularly add exceptions. The general knowledge is used for cases we don't know are exceptional.
- Classical logic is monotonic: If g logically follows from A, it also follows from any superset of A.
- Default reasoning is nonmonotonic: When we add that something is exceptional, we can't conclude what we could before.

< □

• A resort is on the beach or away from the beach.

A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.

A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.
 away_from_beach ← ~on_beach.

- A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.
 away_from_beach ← ~on_beach.
- If we are told the resort is on the beach, we would expect that resort users would have access to the beach.
 If they have access to a beach, we would expect them to be able to swim at the beach.

- A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.
 away_from_beach ← ~on_beach.
- If we are told the resort is on the beach, we would expect that resort users would have access to the beach.
 If they have access to a beach, we would expect them to be able to swim at the beach.

 $beach_access \leftarrow on_beach \land \sim ab_beach_access.$

- A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.
 away_from_beach ← ~on_beach.
- If we are told the resort is on the beach, we would expect that resort users would have access to the beach.
 If they have access to a beach, we would expect them to be able to swim at the beach.

 $beach_access \leftarrow on_beach \land \sim ab_beach_access.$

 $swim_at_beach \leftarrow beach_access \land \sim ab_swim_at_beach.$

- A resort is on the beach or away from the beach.
 A resort is away from the beach unless it says it is on a beach.
 away_from_beach ← ~on_beach.
- If we are told the resort is on the beach, we would expect that resort users would have access to the beach.
 If they have access to a beach, we would expect them to be able to swim at the beach.

 $beach_access \leftarrow on_beach \land \sim ab_beach_access.$

 $swim_at_beach \leftarrow beach_access \land \sim ab_swim_at_beach.$

 $ab_swim_at_beach \leftarrow enclosed_bay \land big_city \land \sim ab_no_swim.$

 $ab_no_swim \leftarrow in_BC \land \sim ab_BC_beaches.$

See end of logicNegation.py in aipython.org or https://artint.info/3e/resounces/ch05/beach.pl How can we represent

• Birds fly.

How can we represent

- Birds fly.
- Emus and tiny birds dont fly.

How can we represent

- Birds fly.
- Emus and tiny birds dont fly.
- Hummingbirds are exceptional tiny birds.