
Integrity Constraints

In the electrical domain, what if we predict that a light should
be on, but observe that it isn’t?
What can we conclude?

We will expand the definite clause language to include
integrity constraints which are rules that imply false, where
false is an atom that is false in all interpretations.

This allows proof by contradiction.

A definite clause knowledge base is always consistent. This
won’t be true with the rules that imply false.
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Horn clauses

An integrity constraint is a clause of the form

false ← a1 ∧ . . . ∧ ak

where the ai are atoms and false is a special atom that is false
in all interpretations.

A Horn clause is either a definite clause or an integrity
constraint.
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Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
▶ is true in interpretation I if α is false in I , and
▶ is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |= ¬c.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 3 / 23



Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
▶ is true in interpretation I if α is false in I , and
▶ is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |= ¬c.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 3 / 23



Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
▶ is true in interpretation I if α is false in I , and
▶ is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |=

¬c.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 3 / 23



Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
▶ is true in interpretation I if α is false in I , and
▶ is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |= ¬c.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 3 / 23



Disjunctive Conclusions

Disjunctions can follow from a Horn clause KB.

The disjunction of α and β, written α ∨ β, is
▶ true in interpretation I if α is true in I or β is true in I (or

both are true in I ).
▶ false in interpretation I if α and β are both false in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← d .

 KB |= ¬c ∨ ¬d .
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Questions and Answers in Horn KBs

An assumable is an atom whose negation you are prepared to
accept as part of a (disjunctive) answer.

A conflict of KB is a set of assumables that, given KB imply
false.

A minimal conflict is a conflict such that no strict subset is
also a conflict.
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Conflict Example

Example: If {c , d , e, f , g , h} are the assumables

KB =


false ← a ∧ b.
a← c.
b ← d .
b ← e.


What are some conflicts?

{c , d} is a conflict

{c , e} is a conflict

{c , d , e, h} is a conflict

What are the minimal conflicts?
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Using Conflicts for Diagnosis

Assume that the user is able to observe whether a light is lit
or dark and whether a power outlet is dead or live.

A light can’t be both lit and dark. An outlet can’t be both
live and dead:

false ← dark l1 & lit l1.

false ← dark l2 & lit l2.

false ← dead p1 & live p2.

Assume the individual components are working correctly:

assumable ok l1.

assumable ok s2.

. . .

Suppose switches s1, s2, and s3 are all up:
up s1. up s2. up s3.
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Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3

in aipython.org, run code at the end of

logicAssumables.py
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Representing the Electrical Environment

light l1.

light l2.

up s1.

up s2.

up s3.

live outside.

lit l1 ← live w0 ∧ ok l1.

live w0 ← live w1 ∧ up s2 ∧ ok s2.

live w0 ← live w2 ∧ down s2 ∧ ok s2.

live w1 ← live w3 ∧ up s1 ∧ ok s1.

live w2 ← live w3 ∧ down s1 ∧ ok s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3 ∧ ok s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.
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If the user has observed l1 and l2 are both dark:

dark l1. dark l2.

There are two minimal conflicts:

{ok cb1, ok s1, ok s2, ok l1} and
{ok cb1, ok s3, ok l2}.

You can derive:

¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1

¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2.

Either cb1 is broken or there is one of six double faults.
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Diagnoses

A consistency-based diagnosis is a set of assumables that has
at least one element in each conflict.

A minimal diagnosis is a diagnosis such that no subset is also
a diagnosis.

Intuitively, one of the minimal diagnoses must hold. A
diagnosis holds if all of its elements are false.

Example: For the proceeding example there are seven minimal
diagnoses: {ok cb1}, {ok s1, ok s3}, {ok s1, ok l2},
{ok s2, ok s3},. . .
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Recall: top-down consequence finding

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.
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Implementing conflict finding: top down

Query is false.

Don’t select an atom that is assumable.

Stop when all of the atoms in the body of the generalised
query are assumable:
▶ this is a conflict
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Example

false ← a.

a← b & c .

b ← d .

b ← e.

c ← f .

c ← g .

e ← h & w .

e ← g .

w ← f .

assumable d , f , g , h.
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Bottom-up Conflict Finding

Conclusions are pairs ⟨a,A⟩, where a is an atom and A is a set
of assumables that imply a.

Initially, conclusion set C = {⟨a, {a}⟩ : a is assumable}.
If there is a rule h← b1 ∧ . . . ∧ bm such that
for each bi there is some Ai such that ⟨bi ,Ai ⟩ ∈ C , then
⟨h,A1 ∪ . . . ∪ Am⟩ can be added to C .

If ⟨a,A1⟩ and ⟨a,A2⟩ are in C , where A1 ⊂ A2, then ⟨a,A2⟩
can be removed from C .

If ⟨false,A1⟩ and ⟨a,A2⟩ are in C , where A1 ⊆ A2, then
⟨a,A2⟩ can be removed from C .
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Bottom-up Conflict Finding Code

C := {⟨a, {a}⟩ : a is assumable };
repeat

select clause “h← b1 ∧ . . . ∧ bm” in T such that
⟨bi ,Ai ⟩ ∈ C for all i and
there is no ⟨h,A′⟩ ∈ C or ⟨false,A′⟩ ∈ C

such that A′ ⊆ A where A = A1 ∪ . . . ∪ Am

C := C ∪ {⟨h,A⟩}
Remove any elements of C that can now be pruned

until no more selections are possible
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Assumption-based Reasoning

Often we want our agents to make assumptions rather than doing
deduction from their knowledge. For example:

In abduction an agent makes assumptions to explain
observations. For example, it hypothesizes what could be
wrong with a system to produce the observed symptoms.

In default reasoning an agent makes assumptions of normality
to make predictions. For example, the delivery robot may want
to assume Mary is in her office, even if it isn’t always true.
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Design and Recognition

Two different tasks use assumption-based reasoning:

Design The aim is to design an artifact or plan. The designer
can select whichever design they like that satisfies the design
criteria.

Recognition The aim is to find out what is true based on
observations. If there are a number of possibilities, the
recognizer can’t select the one they like best. The underlying
reality is fixed; the aim is to find out what it is.

Compare: Recognizing a disease with designing a treatment.
Designing a meeting time with determining when it is.
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An Assumption-based Framework

The assumption-based framework is defined in terms of two sets of
formulae:

F is a set of closed formula called the facts.
These are formulae that are given as true in the world.
Assume F are Horn clauses.

H is a set of formulae called the possible hypotheses or
assumables. Ground instance of the possible hypotheses can
be assumed if consistent.
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Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .
D is an explanation of g if F ∪ D |= g and F ∪ D ̸|= false.
A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .

D is an explanation of g if F ∪ D |= g and F ∪ D ̸|= false.
A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .
D is an explanation of g if

F ∪ D |= g and F ∪ D ̸|= false.
A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .
D is an explanation of g if F ∪ D |= g and F ∪ D ̸|= false.

A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .
D is an explanation of g if F ∪ D |= g and F ∪ D ̸|= false.
A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Making Assumptions

A scenario of ⟨F ,H⟩ is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from ⟨F ,H⟩ is a scenario that, together
with F , implies g .
D is an explanation of g if F ∪ D |= g and F ∪ D ̸|= false.
A minimal explanation is an explanation such that no strict
subset is also an explanation.

An extension of ⟨F ,H⟩ is the set of logical consequences of F
and a maximal scenario of ⟨F ,H⟩.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.4 20 / 23



Example

a← b ∧ c.
b ← e.
b ← h.
c ← g .
c ← f .
d ← g .
false ← e ∧ d .
f ← h ∧m.
assumable e, h, g ,m, n.

Is {e,m, n} a scenario?

yes

Is {e, g ,m} a scenario. no

Is {h,m} an explanation for a. yes

Is {e, h,m} an explanation for a. yes

Is {e, g , h,m} an explanation for a. no

Is {e, h,m, n} a maximal scenario. yes

Is {h, g ,m, n} a maximal scenario. yes
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Default Reasoning and Abduction

There are two strategies for using the assumption-based
framework:

Default reasoning Where the truth of g is unknown and is to
be determined.
An explanation for g corresponds to an argument for g .

Abduction Where g is given, and we are interested in
explaining it. g could be an observation in a recognition task
or a design goal in a design task.

Give observations, we typically do abduction, then default
reasoning to find consequences.
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Computing Explanations

To find assumables to imply the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select non-assumable atom ai from the body of ac

choose clause C from KB with ai as head
replace ai in the body of ac by the body of C

until all atoms in the body of ac are assumable.

To find an explanation of query ?q1 ∧ . . . ∧ qk :

find assumables to imply ?q1 ∧ . . . ∧ qk

ensure that no subset of the assumables found implies false
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