Integrity Constraints

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
What can we conclude?

Integrity Constraints

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.

Integrity Constraints

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
- This allows proof by contradiction.

Integrity Constraints

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
- This allows proof by contradiction.
- A definite clause knowledge base is always consistent. This won't be true with the rules that imply false.

Horn clauses

- An integrity constraint is a clause of the form

$$
\text { false } \leftarrow a_{1} \wedge \ldots \wedge a_{k}
$$

where the a_{i} are atoms and false is a special atom that is false in all interpretations.

Horn clauses

- An integrity constraint is a clause of the form

$$
\text { false } \leftarrow a_{1} \wedge \ldots \wedge a_{k}
$$

where the a_{i} are atoms and false is a special atom that is false in all interpretations.

- A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

- Negations can follow from a Horn clause KB.

Negative Conclusions

- Negations can follow from a Horn clause KB.
- The negation of α, written $\neg \alpha$ is a formula that
- is true in interpretation I if α is false in I, and
- is false in interpretation I if α is true in I.

Negative Conclusions

- Negations can follow from a Horn clause KB.
- The negation of α, written $\neg \alpha$ is a formula that
- is true in interpretation I if α is false in I, and
- is false in interpretation I if α is true in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow c .
\end{array}\right\} \quad K B \models
$$

Negative Conclusions

- Negations can follow from a Horn clause KB.
- The negation of α, written $\neg \alpha$ is a formula that
- is true in interpretation I if α is false in I, and
- is false in interpretation I if α is true in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow c .
\end{array}\right\} \quad K B \models \neg c
$$

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β, written $\alpha \vee \beta$, is
- true in interpretation I if α is true in I or β is true in I (or both are true in I).
- false in interpretation I if α and β are both false in I.

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β, written $\alpha \vee \beta$, is
- true in interpretation I if α is true in I or β is true in I (or both are true in I).
- false in interpretation I if α and β are both false in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow d .
\end{array}\right\} \quad K B \models
$$

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β, written $\alpha \vee \beta$, is
- true in interpretation I if α is true in I or β is true in I (or both are true in I).
- false in interpretation I if α and β are both false in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow d .
\end{array}\right\} \quad K B \models \neg c \vee \neg d
$$

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of $K B$ is a set of assumables that, given $K B$ imply false.

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of $K B$ is a set of assumables that, given $K B$ imply false.
- A minimal conflict is a conflict such that no strict subset is also a conflict.

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

What are some conflicts?

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

What are some conflicts?

- $\{c, d\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

What are some conflicts?

- $\{c, d\}$ is a conflict
- $\{c, e\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

What are some conflicts?

- $\{c, d\}$ is a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e, h\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

What are some conflicts?

- $\{c, d\}$ is a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e, h\}$ is a conflict

What are the minimal conflicts?

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

$$
\begin{aligned}
& \text { false } \leftarrow \text { dark_}_{1} \& \text { lit_}_{1} 1_{1} \\
& \text { false } \leftarrow \text { dark_}_{2} \& \text { lit_}_{2} . \\
& \text { false } \leftarrow \text { dead_}_{-} p_{1} \& \text { live_ }_{2} .
\end{aligned}
$$

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

$$
\begin{aligned}
& \text { false } \leftarrow \text { dark_}_{1} \& \text { lit_}_{1} l_{1} . \\
& \text { false } \leftarrow \text { dark_}_{2} \& \text { lit_}_{2} . \\
& \text { false } \leftarrow \text { dead_}_{-} p_{1} \& \text { live_ }_{2} .
\end{aligned}
$$

- Assume the individual components are working correctly: assumable ok_ l_{1}. assumable ok_s 2 $_{2}$.

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:

$$
\begin{aligned}
& \text { false } \leftarrow \text { dark_}_{1} \& \text { lit_}_{1} . \\
& \text { false } \leftarrow \text { dark_}_{2} \& \text { lit_}_{2} . \\
& \text { false } \leftarrow \text { dead_}_{-} p_{1} \& \text { live_ }_{2} .
\end{aligned}
$$

- Assume the individual components are working correctly: assumable ok_l. assumable ok_s 2 $_{2}$.
- Suppose switches s_{1}, s_{2}, and s_{3} are all up: up_s1. up_s2. up_s3.

Electrical Environment

in aipython.org, run code at the end of
logicAssumables.py

Representing the Electrical Environment

	$l i t _l_{1} \leftarrow l_{\text {live_ }} w_{0} \wedge$ ok_ l_{1}.
	live_ $w_{0} \leftarrow$ live_ $w_{1} \wedge u p_{-} s_{2} \wedge o k_{-} s_{2}$. live_ $w_{0} \leftarrow$ live_ $_{2} \wedge$ down_s $s_{2} \wedge o k_{-} s_{2}$.
light ι_{1}.	live $w_{1} \leftarrow \mathrm{live}_{-} w_{3} \wedge u p_{-} s_{1} \wedge o k_{-s_{1}}$.
light_2.	live_ $w_{2} \leftarrow$ live_ $^{\prime} w_{3} \wedge$ down_s $s_{1} \wedge$ ok_s s_{1}.
$u p_{-} s_{1}$.	$l_{\text {lit }}^{1} l_{2} \leftarrow \mathrm{live}_{-} w_{4} \wedge$ ok_l l_{2}.
$u p_{-} s_{2}$.	live_w $w_{4} \leftarrow$ live_w $w_{3} \wedge u p_{-} s_{3} \wedge$ ok_s s_{3}.
up_S3.	live_ $p_{1} \leftarrow$ live_w ${ }_{3}$.
live_outside.	$l_{\text {live_ }} w_{3} \leftarrow$ live_ $w_{5} \wedge$ ok_cb ${ }_{1}$.
	live_ $p_{2} \leftarrow$ live_w6.
	live_ $w_{6} \leftarrow$ live_ $w_{5} \wedge$ ok_cb ${ }_{2}$.
	live_ $w_{5} \leftarrow$ live_outside.

- If the user has observed I_{1} and I_{2} are both dark:

$$
\operatorname{dark}_{-} l_{1} . \text { dark_}_{2} .
$$

- If the user has observed I_{1} and I_{2} are both dark:

$$
\text { dark_1. dark_ } l_{2} \text {. }
$$

- There are two minimal conflicts:
- If the user has observed I_{1} and I_{2} are both dark: dark_ll_{1}. dark_ l_{2}.
- There are two minimal conflicts:
$\left\{o k_{-} c b_{1}, o k_{-s_{1}}, o k_{-} s_{2}, o k_{-} I_{1}\right\}$ and \{ok_cb1,ok_s3,ok_l2\}.
- You can derive:
- If the user has observed I_{1} and I_{2} are both dark: dark_lı. dark_ l_{2}.
- There are two minimal conflicts:
$\left\{o k_{-} c b_{1}, o k_{-} s_{1}, o k_{-} s_{2}, o k_{-} l_{1}\right\}$ and \{ok_cb1, ok_s3, ok_l2\}.
- You can derive:

$$
\begin{aligned}
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{1} \vee \neg o k_{-} s_{2} \vee \neg o k_{-} I_{1} \\
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{3} \vee \neg o k_{-} l_{2} .
\end{aligned}
$$

- If the user has observed I_{1} and I_{2} are both dark:

$$
\operatorname{dark}_{-} l_{1} . \text { dark_}_{2} .
$$

- There are two minimal conflicts:

$$
\begin{aligned}
& \left\{o k_{-} c b_{1}, o k_{-} s_{1}, o k_{-} s_{2}, o k_{-} I_{1}\right\} \text { and } \\
& \left\{o k_{-} c b_{1}, o k_{-} s_{3}, o k_{-} I_{2}\right\} .
\end{aligned}
$$

- You can derive:

$$
\begin{aligned}
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{1} \vee \neg o k_{-} s_{2} \vee \neg o k_{-} I_{1} \\
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{3} \vee \neg o k_{-} l_{2} .
\end{aligned}
$$

- Either
- If the user has observed I_{1} and I_{2} are both dark:

$$
\operatorname{dark}_{-} l_{1} . \text { dark_}_{2} .
$$

- There are two minimal conflicts:

$$
\begin{aligned}
& \left\{o k_{-} c b_{1}, o k_{-} s_{1}, o k_{-} s_{2}, o k_{-} I_{1}\right\} \text { and } \\
& \left\{o k_{-} c b_{1}, o k_{-} s_{3}, o k_{-} I_{2}\right\} .
\end{aligned}
$$

- You can derive:

$$
\begin{aligned}
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{1} \vee \neg o k_{-} s_{2} \vee \neg o k_{-} I_{1} \\
& \neg o k_{-} c b_{1} \vee \neg o k_{-} s_{3} \vee \neg o k_{-} l_{2} .
\end{aligned}
$$

- Either $c b_{1}$ is broken or there is one of six double faults.

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the proceeding example there are

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the proceeding example there are seven minimal diagnoses:

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the proceeding example there are seven minimal diagnoses: $\left\{o k_{-} c b_{1}\right\},\left\{o k_{-} s_{1}, o k_{-} s_{3}\right\},\left\{o k_{-} s_{1}, o k_{-} l_{2}\right\}$, $\left\{o k_{-} s_{2}, o k_{-} s_{3}\right\}, \ldots$

Recall: top-down consequence finding

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select atom a_{i} from the body of $a c$; choose clause C from $K B$ with a_{i} as head; replace a_{i} in the body of $a c$ by the body of C until $a c$ is an answer.

Implementing conflict finding: top down

- Query is false.

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.
- Stop when all of the atoms in the body of the generalised query are assumable:

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.
- Stop when all of the atoms in the body of the generalised query are assumable:
- this is a conflict

Example

$$
\begin{aligned}
& \text { false } \leftarrow a . \\
& a \leftarrow b \& c . \\
& b \leftarrow d . \\
& b \leftarrow e \\
& c \leftarrow f \\
& c \leftarrow g . \\
& e \leftarrow h \& w . \\
& e \leftarrow g . \\
& w \leftarrow f . \\
& \text { assumable } d, f, g, h .
\end{aligned}
$$

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle: a$ is assumable $\}$.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle$: a is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle$: a is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle$: a is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
- If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle$: a is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
- If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle$: a is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
- If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.
- If $\left\langle\right.$ false, $\left.A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subseteq A_{2}$, then

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle: a$ is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
- If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.
- If $\left\langle\right.$ false, $\left.A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subseteq A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.

Bottom-up Conflict Finding Code

$C:=\{\langle a,\{a\}\rangle: a$ is assumable $\} ;$

repeat

select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in T such that $\left\langle b_{i}, A_{i}\right\rangle \in C$ for all i and there is no $\left\langle h, A^{\prime}\right\rangle \in C$ or $\left\langle\right.$ false, $\left.A^{\prime}\right\rangle \in C$ such that $A^{\prime} \subseteq A$ where $A=A_{1} \cup \ldots \cup A_{m}$
$C:=C \cup\{\langle h, A\rangle\}$
Remove any elements of C that can now be pruned until no more selections are possible

Assumption-based Reasoning

Often we want our agents to make assumptions rather than doing deduction from their knowledge. For example:

- In abduction an agent makes assumptions to explain observations. For example, it hypothesizes what could be wrong with a system to produce the observed symptoms.

Assumption-based Reasoning

Often we want our agents to make assumptions rather than doing deduction from their knowledge. For example:

- In abduction an agent makes assumptions to explain observations. For example, it hypothesizes what could be wrong with a system to produce the observed symptoms.
- In default reasoning an agent makes assumptions of normality to make predictions. For example, the delivery robot may want to assume Mary is in her office, even if it isn't always true.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.
- Recognition The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can't select the one they like best. The underlying reality is fixed; the aim is to find out what it is.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.
- Recognition The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can't select the one they like best. The underlying reality is fixed; the aim is to find out what it is.
Compare: Recognizing a disease with designing a treatment.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.
- Recognition The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can't select the one they like best. The underlying reality is fixed; the aim is to find out what it is.
Compare: Recognizing a disease with designing a treatment. Designing a meeting time with determining when it is.

An Assumption-based Framework

The assumption-based framework is defined in terms of two sets of formulae:

- F is a set of closed formula called the facts.

These are formulae that are given as true in the world. Assume F are Horn clauses.

An Assumption-based Framework

The assumption-based framework is defined in terms of two sets of formulae:

- F is a set of closed formula called the facts.

These are formulae that are given as true in the world. Assume F are Horn clauses.

- H is a set of formulae called the possible hypotheses or assumables. Ground instance of the possible hypotheses can be assumed if consistent.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.
D is an explanation of g if

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.
D is an explanation of g if $F \cup D \vDash g$ and $F \cup D \not \vDash$ false.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.
D is an explanation of g if $F \cup D \models g$ and $F \cup D \not \models f$ false. A minimal explanation is an explanation such that no strict subset is also an explanation.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.
D is an explanation of g if $F \cup D \models g$ and $F \cup D \not \models f$ false. A minimal explanation is an explanation such that no strict subset is also an explanation.
- An extension of $\langle F, H\rangle$ is the set of logical consequences of F and a maximal scenario of $\langle F, H\rangle$.

Example

```
\(a \leftarrow b \wedge c . \quad \bullet\) Is \(\{e, m, n\}\) a scenario?
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

```
\(a \leftarrow b \wedge c\).
- Is \(\{e, m, n\}\) a scenario? yes
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

```
\(a \leftarrow b \wedge c\).
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

```
\(a \leftarrow b \wedge c\).
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

```
\(a \leftarrow b \wedge c\).
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
```

- Is $\{e, m, n\}$ a scenario? yes
- Is $\{e, g, m\}$ a scenario. no
- Is $\{h, m\}$ an explanation for a. yes
- Is $\{e, h, m\}$ an explanation for a. yes
- Is $\{e, g, h, m\}$ an explanation for a.

```
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

```
\(a \leftarrow b \wedge c\).
\(b \leftarrow e\).
\(b \leftarrow h\).
\(c \leftarrow g\).
\(c \leftarrow f\).
\(d \leftarrow g\).
false \(\leftarrow e \wedge d\).
\(f \leftarrow h \wedge m\).
assumable \(e, h, g, m, n\).
```


Example

$$
\begin{aligned}
& a \leftarrow b \wedge c . \\
& b \leftarrow e . \\
& b \leftarrow h \text {. } \\
& c \leftarrow g \text {. } \\
& c \leftarrow f \text {. } \\
& d \leftarrow g \text {. } \\
& \text { false } \leftarrow e \wedge d \text {. } \\
& f \leftarrow h \wedge m \text {. } \\
& \text { assumable } e, h, g, m, n \text {. }
\end{aligned}
$$

Example

$$
\begin{aligned}
& a \leftarrow b \wedge c . \\
& b \leftarrow e . \\
& b \leftarrow h \text {. } \\
& c \leftarrow g \text {. } \\
& c \leftarrow f \text {. } \\
& d \leftarrow g \text {. } \\
& \text { false } \leftarrow e \wedge d \text {. } \\
& f \leftarrow h \wedge m \text {. } \\
& \text { assumable } e, h, g, m, n \text {. }
\end{aligned}
$$

Default Reasoning and Abduction

There are two strategies for using the assumption-based framework:

- Default reasoning Where the truth of g is unknown and is to be determined.
An explanation for g corresponds to an argument for g.

Default Reasoning and Abduction

There are two strategies for using the assumption-based framework:

- Default reasoning Where the truth of g is unknown and is to be determined.
An explanation for g corresponds to an argument for g.
- Abduction Where g is given, and we are interested in explaining it. g could be an observation in a recognition task or a design goal in a design task.

Default Reasoning and Abduction

There are two strategies for using the assumption-based framework:

- Default reasoning Where the truth of g is unknown and is to be determined.
An explanation for g corresponds to an argument for g.
- Abduction Where g is given, and we are interested in explaining it. g could be an observation in a recognition task or a design goal in a design task.
Give observations, we typically do abduction, then default reasoning to find consequences.

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C until all atoms in the body of ac are assumable.

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C until all atoms in the body of ac are assumable.

To find an explanation of query $? q_{1} \wedge \ldots \wedge q_{k}$:

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C until all atoms in the body of $a c$ are assumable.
To find an explanation of query $? q_{1} \wedge \ldots \wedge q_{k}$:

- find assumables to imply ? $q_{1} \wedge \ldots \wedge q_{k}$

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of ac choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C until all atoms in the body of $a c$ are assumable.

To find an explanation of query $? q_{1} \wedge \ldots \wedge q_{k}$:

- find assumables to imply ? $q_{1} \wedge \ldots \wedge q_{k}$
- ensure that no subset of the assumables found implies false

