Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
- an atom or
\checkmark the form $b_{1} \wedge b_{2}$ where b_{1} and b_{2} are bodies.
- A definite clause is either
- an atomic fact: an atom or
\rightarrow a rule: of the form $h \leftarrow b$ where h is an atom and b is a body. An atomic fact is treated as a rule with an empty body.
- A knowledge base or logic program is a set of definite clauses.
- A qeury is a body that is asked of a knowledge base.

Electrical Environment

Representing the Electrical Environment

light_1 1 .
light_l2.
down_s.
up_s \mathbf{S}_{2}.
up_S3.
ok_1.
ok_l2.
ok_cb.
$o k_{-} c b_{2}$.
live_outside.
lit_$l_{1} \leftarrow$ live_ $w_{0} \wedge$ ok_ l_{1}
live_ $w_{0} \leftarrow$ live_ $w_{1} \wedge u p_{-} s_{2}$.
live_ $w_{0} \leftarrow$ live_ $w_{2} \wedge$ down_s s_{2}.
live_ $w_{1} \leftarrow$ live_ $_{-} w_{3} \wedge$ up_s $_{1}$.
live_ $_{-} W_{2} \leftarrow$ live_ $_{-} W_{3} \wedge$ down_s s_{1}.
lit_l $l_{2} \leftarrow$ live_ $_{4} \wedge$ ok_l $_{2}$.
live_ $_{4} \leftarrow$ live_ $_{3} \wedge$ up_s $_{3}$.
live_ $p_{1} \leftarrow$ live_ $_{3}$.
live_ $_{-} w_{3} \leftarrow$ live_ $_{5} \wedge$ ok_cb $_{1}$.
live_ $p_{2} \leftarrow$ live_ w_{6}.
live_ $_{-} w_{6} \leftarrow$ live_ $W_{5} \wedge$ ok_cb . $_{2}$

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $K B \vdash g$ means g can be derived from knowledge base $K B$.
- Recall $K B \models g$ means g is true in all models of $K B$.
- A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
- If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.
- A complete proof procedure can produce all results.

Aside: Gödel's incompleteness theorem

Gödel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and complete.
sufficiently rich $=$ can represent arithmetic

Proof sketch:

Consider the statement "this statement cannot be proven".

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.
- the state of a computer can be seen as a (big) integer, and all operations as arithmetic operations
- We can write a proof system that can represent that statement in a computer.

Bottom-up Proof Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " is a clause in the knowledge base, and each b_{i} has been derived, then h can be derived.
This is forward chaining on this clause.
(An atomic fact is treated as a clause with empty body $(m=0)$.)

Bottom-up proof procedure

$K B \vdash g$ if $g \in C$ at the end of this procedure:
$C:=\{ \} ;$
repeat
select fact h or rule " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that $b_{i} \in C$ for all i, and
$h \notin C$;
$C:=C \cup\{h\}$
until no more clauses can be selected.

Example

$$
\begin{aligned}
& a \leftarrow b \wedge c . \\
& a \leftarrow e \wedge f . \\
& b \leftarrow f \wedge k . \\
& c \leftarrow e . \\
& d \leftarrow k . \\
& e . \\
& f \leftarrow j \wedge e . \\
& f \leftarrow c . \\
& j \leftarrow c .
\end{aligned}
$$

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that isn't true in every model of $K B$. Call it h.
Suppose h isn't true in model I of $K B$.
- h was added to C, so there must be a clause in $K B$

$$
h \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

where each b_{i} is in C, and so true in I.
h is false in I (by assumption)
So this clause is false in I.
Therefore I isn't a model of $K B$.

- Contradiction. Therefore there cannot be such a g.

Fixed Point

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let I be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of $K B$.

Proof: suppose $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ is false in I.
Then h is false and each b_{i} is true in l.
Thus h can be added to C.
Contradiction to C being the fixed point.

- I is called a Minimal Model.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $K B \vdash g$.

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of $K B$.
An answer clause is of the form:

$$
y e s \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

The SLD Resolution of this answer clause on atom a_{i} with the clause:

$$
a_{i} \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

is the answer clause

$$
y e s \leftarrow a_{1} \wedge \ldots \wedge a_{i-1} \wedge b_{1} \wedge \cdots \wedge b_{p} \wedge a_{i+1} \wedge \cdots \wedge a_{m} .
$$

An atomic fact in the knowledge base is considered as a clause where $p=0$.

Derivations

- An answer is an answer clause with $m=0$. That is, it is the answer clause yes \leftarrow.
- A derivation of query "? $q_{1} \wedge \ldots \wedge q_{k}$ " from $K B$ is a sequence of answer clauses $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}$ such that
- γ_{0} is the answer clause yes $\leftarrow q_{1} \wedge \ldots \wedge q_{k}$
- γ_{i} is obtained by resolving γ_{i-1} with a clause in $K B$
- γ_{n} is an answer.

Top-down definite clause interpreter

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=\text { "yes } \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select atom a_{i} from the body of ac
choose clause C from $K B$ with a_{i} as head replace a_{i} in the body of $a c$ by the body of C until $a c$ is an answer.

Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. "select"
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example: successful derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a

$$
\begin{array}{lll}
\gamma_{0}: & \text { yes } \leftarrow a & \gamma_{4}: \\
\gamma_{1}: & \text { yes } \leftarrow e \leftarrow e \\
\gamma_{2}: & \text { yes } \leftarrow f & \gamma_{5}: \\
\gamma_{3}: & \text { yes } \leftarrow \\
& \text { yes } \leftarrow c &
\end{array}
$$

Example: failing derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a
$\gamma_{0}:$ yes $\leftarrow a$
$\gamma_{1}:$ yes $\leftarrow b \wedge c$
$\gamma_{2}: y e s \leftarrow f \wedge k \wedge c$
$\gamma_{3}: \quad y e s \leftarrow c \wedge k \wedge c$
$\gamma_{4}: \quad y e s \leftarrow e \wedge k \wedge c$
$\gamma_{5}:$ yes $\leftarrow k \wedge c$

Search Graph for SLD Resolution

