
Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions
that can’t represent disjunction of atoms:

A body is either
▶ an atom or
▶ the form b1 ∧ b2 where b1 and b2 are bodies.

A definite clause is either
▶ an atomic fact: an atom or
▶ a rule: of the form h← b where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

A knowledge base or logic program is a set of definite clauses.

A qeury is a body that is asked of a knowledge base.
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Representing the Electrical Environment

light l1.

light l2.

down s1.

up s2.

up s3.

ok l1.

ok l2.

ok cb1.

ok cb2.

live outside.

lit l1 ← live w0 ∧ ok l1

live w0 ← live w1 ∧ up s2.

live w0 ← live w2 ∧ down s2.

live w1 ← live w3 ∧ up s1.

live w2 ← live w3 ∧ down s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.
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Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ⊢ g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ⊢ g implies KB |= g .
▶ If a sound proof procedure produces a result, the result is

correct.

A proof procedure is complete if KB |= g implies KB ⊢ g .
▶ A complete proof procedure can produce all results.
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Aside: Gödel’s incompleteness theorem

Gödel’s incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic

Proof sketch:
Consider the statement “this statement cannot be proven”.

If it is true then system is incomplete.

If it is false then system is unsound.

The alternative is that statement cannot be represented.

the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

We can write a proof system that can represent that
statement in a computer.
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Gödel’s incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.

If it is true then system is incomplete.

If it is false then system is unsound.

The alternative is that statement cannot be represented.

the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

We can write a proof system that can represent that
statement in a computer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 5 / 20
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Gödel’s incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.

If it is true then system is incomplete.

If it is false then system is unsound.

The alternative is that statement cannot be represented.

the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

We can write a proof system that can represent that
statement in a computer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 5 / 20



Bottom-up Proof Procedure

One rule of derivation, a generalized form of modus ponens:
If “h← b1 ∧ . . . ∧ bm” is a clause in the knowledge base,
and each bi has been derived, then h can be derived.

This is forward chaining on this clause.
(An atomic fact is treated as a clause with empty body (m = 0).)
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Bottom-up proof procedure

KB ⊢ g if g ∈ C at the end of this procedure:

C := {};
repeat

select fact h or rule “h← b1 ∧ . . . ∧ bm” in KB such that
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
until no more clauses can be selected.
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Example

a← b ∧ c .

a← e ∧ f .

b ← f ∧ k.

c ← e.

d ← k .

e.

f ← j ∧ e.

f ← c.

j ← c .
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Clicker Question

Consider the knowledge base KB:

happy ← good . foo ← bar ∧ fun.
happy ← green. bar ← zed .
green. zed .

What is the final consequence set in the bottom-up proof
procedure run on KB?

A {happy , good , green, foo, bar , fun, zed}
B {happy , good , green, foo, bar , zed}
C {happy , green, bar , zed}
D {green, bar , zed}
E None of the above
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Soundness of bottom-up proof procedure

If KB ⊢ g then KB |= g .

Suppose there is a g such that KB ⊢ g and KB ̸|= g .

Then there must be a first atom added to C that isn’t true in
every model of KB. Call it h.
Suppose h isn’t true in model I of KB.

h was added to C , so there must be a clause in KB

h← b1 ∧ . . . ∧ bm

where each bi is in C , and so true in I .
h is false in I (by assumption)
So this clause is false in I .
Therefore I isn’t a model of KB.

Contradiction. Therefore there cannot be such a g .
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Fixed Point

The C generated at the end of the bottom-up algorithm is
called a fixed point.

Let I be the interpretation in which every element of the fixed
point is true and every other atom is false.

Claim: I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I .
Then h is false and each bi is true in I .
Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.
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Completeness

If KB |= g then KB ⊢ g .

Suppose KB |= g .

Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ⊢ g .
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Clicker Question

Suppose there at some atom aaa such that
KB ⊢ aaa and
KB ̸|= aaa.
What can be inferred?

A The proof procedure is not sound

B The proof prodecure is not complete

C The proof procedure is sound and complete

D The proof procedure is either sound or complete

E None of the above
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Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes ← a1 ∧ a2 ∧ . . . ∧ am

The SLD Resolution of this answer clause on atom ai with the
clause:

ai ← b1 ∧ . . . ∧ bp

is the answer clause

yes ← a1∧. . .∧ai−1 ∧ b1∧ · · · ∧bp ∧ ai+1∧ · · · ∧am.

An atomic fact in the knowledge base is considered as a clause
where p = 0.
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Derivations

An answer is an answer clause with m = 0.
That is, it is the answer clause yes ← .

A derivation of query “?q1 ∧ . . . ∧ qk” from KB is a sequence
of answer clauses γ0, γ1, . . . , γn such that
▶ γ0 is the answer clause yes ← q1 ∧ . . . ∧ qk
▶ γi is obtained by resolving γi−1 with a clause in KB
▶ γn is an answer.
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Top-down definite clause interpreter

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac
choose clause C from KB with ai as head
replace ai in the body of ac by the body of C

until ac is an answer.
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Nondeterministic Choice

Don’t-care nondeterminism If one selection doesn’t lead to a
solution, there is no point trying other alternatives.
“select”

Don’t-know nondeterminism If one choice doesn’t lead to a
solution, other choices may.
choose
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Example: successful derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k . e.
f ← j ∧ e. f ← c . j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e
γ1 : yes ← e ∧ f γ5 : yes ←
γ2 : yes ← f
γ3 : yes ← c
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Example: failing derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k . e.
f ← j ∧ e. f ← c . j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e ∧ k ∧ c
γ1 : yes ← b ∧ c γ5 : yes ← k ∧ c
γ2 : yes ← f ∧ k ∧ c
γ3 : yes ← c ∧ k ∧ c
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Search Graph for SLD Resolution

a← b ∧ c . a← g .
a← h. b ← j .
b ← k . d ← m.
d ← p. f ← m.
sf ← p. g ← m.
g ← f . k ← m.
h← m. p.
?a ∧ d

yes←a^d

yes←j^c^d
yes←k^c^d

yes←m^c^d

yes←g^dyes←b^c^d

yes←m^d

yes←m^d

yes←f^d

yes←p^d

yes←d

yes←m yes←p

yes←h^d

yes←m^d

yes←
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