Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions
that can’t represent disjunction of atoms:
@ A body is either

» an atom or
» the form b; A by, where b; and b, are bodies.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions
that can’t represent disjunction of atoms:
@ A body is either
» an atom or
» the form b; A by, where b; and b, are bodies.
o A definite clause is either
P an atomic fact: an atom or
» a rule: of the form h +— b where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions
that can’t represent disjunction of atoms:
@ A body is either

» an atom or
» the form b; A by, where b; and b, are bodies.

@ A definite clause is either

» an atomic fact: an atom or
» a rule: of the form h +— b where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

@ A knowledge base or logic program is a set of definite clauses.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Simple language: propositional definite clauses

Propositional definite clauses are a resticited form of propostions
that can’t represent disjunction of atoms:
@ A body is either

» an atom or
» the form b; A by, where b; and b, are bodies.

@ A definite clause is either

» an atomic fact: an atom or
» a rule: of the form h +— b where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.
@ A knowledge base or logic program is a set of definite clauses.

@ A geury is a body that is asked of a knowledge base.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Electrical Environme

o) outside power
51 w5
w] P
circuit breaker
52 W2 cb2 E E
w3
3 ‘@_017
w0 switch
T~
w6
w.
4 two-way
P2 @ switch
1 —@
pl @ light
2 I
power
_<) outlet

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Representing the Electrical Environment

lit_ly < live_wg N ok_h

light_I. live_wg < live_wy N\ up_ss.
light_l. live_wy < live_ws A down_sp.
down_s;. live_wy < live_ws N\ up_s;.
up_ss. live_wy < live_ws A\ down_s;.
up_ss. lit_l < live_wg A ok_b.
ok_h. live_wy < live_ws A up_ss.
ok_b. live_p1 <+ live_ws.

ok_cb;. live_ws < live_ws N ok _cb;.
ok _cb,. live_po < live_ws.
live_outside. live_wg < live_ws N ok _cby.

live_ws < live_outside.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

@ Recall KB |= g means g is true in all models of KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

@ Recall KB |= g means g is true in all models of KB.

@ A proof procedure is sound if KB - g implies KB |= g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

@ Recall KB |= g means g is true in all models of KB.

@ A proof procedure is sound if KB - g implies KB |= g.

» |If a sound proof procedure produces a result, the result is
correct.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

@ Recall KB |= g means g is true in all models of KB.

@ A proof procedure is sound if KB - g implies KB |= g.

» |If a sound proof procedure produces a result, the result is
correct.

@ A proof procedure is complete if KB |= g implies KB - g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

@ Given a proof procedure, KB - g means g can be derived
from knowledge base KB.

@ Recall KB |= g means g is true in all models of KB.

@ A proof procedure is sound if KB - g implies KB |= g.

» |If a sound proof procedure produces a result, the result is
correct.

@ A proof procedure is complete if KB |= g implies KB - g.
» A complete proof procedure can produce all results.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and

complete.
sufficiently rich = can represent arithmetic

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement “this statement cannot be proven”.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement “this statement cannot be proven”.

@ If it is true then

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement “this statement cannot be proven”.

@ If it is true then system is incomplete.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement “this statement cannot be proven”.

@ If it is true then system is incomplete.

o If it is false then

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and
complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement “this statement cannot be proven”.

@ If it is true then system is incomplete.

o If it is false then system is unsound.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.
@ If it is true then system is incomplete.
o If it is false then system is unsound.

@ The alternative is that statement cannot be represented.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.
@ If it is true then system is incomplete.
o If it is false then system is unsound.
@ The alternative is that statement cannot be represented.

o the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Aside: Godel's incompleteness theorem

Godel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.
@ If it is true then system is incomplete.
o If it is false then system is unsound.
@ The alternative is that statement cannot be represented.
°

the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

We can write a proof system that can represent that
statement in a computer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Bottom-up Proof Procedure

One rule of derivation, a generalized form of modus ponens:
If “h< by N\ ...Nbpy" is a clause in the knowledge base,
and each b; has been derived, then h can be derived.

This is forward chaining on this clause.
(An atomic fact is treated as a clause with empty body (m = 0).)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Bottom-up proof procedure

KB F g if g € C at the end of this procedure:
C:={h

repeat
select fact hor rule "h< by A ... A by" in KB such that
b; € C for all i, and
hé¢ C,
C:=CuU{h}
until no more clauses can be selected.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

a< bAc.
a<—eANf.
b+ f ANk
c+e.
d < k.

f—jNe.
f«+c.
Jj+c.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Clicker Question

Consider the knowledge base KB:

happy <+ good. foo < bar A fun.
happy < green. bar < zed.
green. zed.

What is the final consequence set in the bottom-up proof
procedure run on KB?

A {happy, good, green, foo, bar, fun, zed }
B {happy, good, green, foo, bar, zed }

C {happy, green, bar, zed }

D {green, bar, zed}

E None of the above

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 10/20

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 10/20

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 10/20

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

@ h was added to C, so there must be a clause in KB
h<bi N ...Nbny

where each b; is in C, and so

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

@ h was added to C, so there must be a clause in KB
h<bi N ...Nbny

where each b; is in C, and so true in /.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

@ h was added to C, so there must be a clause in KB
h<bi N ...Nbny

where each b; is in C, and so true in /.
h is false in | (by assumption)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

@ h was added to C, so there must be a clause in KB
h<bi N ...Nbny

where each b; is in C, and so true in /.
h is false in | (by assumption)
So this clause is false in /.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Soundness of bottom-up proof procedure

If KB g then KB = g.
@ Suppose there is a g such that KB+ g and KB [~ g.

@ Then there must be a first atom added to C that isn't true in
every model of KB. Call it h.
Suppose h isn't true in model / of KB.

@ h was added to C, so there must be a clause in KB
h<bi N ...Nbny

where each b; is in C, and so true in /.
h is false in | (by assumption)

So this clause is false in /.

Therefore | isn't a model of KB.

o Contradiction. Therefore there cannot be such a g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.

@ Claim: I is a model of KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.

e Claim: / is a model of KB.
Proof: suppose h < by A ... A by in KB is false in .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.
e Claim: / is a model of KB.

Proof: suppose h < by A ... A by in KB is false in .
Then h is false and each b; is true in /.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.
e Claim: / is a model of KB.
Proof: suppose h < by A ... A by in KB is false in .
Then h is false and each b; is true in /.
Thus h can be added to C.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.

@ Claim: I is a model of KB.
Proof: suppose h < by A ... A by in KB is false in .
Then h is false and each b; is true in /.
Thus h can be added to C.
Contradiction to C being the fixed point.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

@ The C generated at the end of the bottom-up algorithm is
called a fixed point.

@ Let / be the interpretation in which every element of the fixed
point is true and every other atom is false.
@ Claim: I is a model of KB.
Proof: suppose h < by A ... A by in KB is false in .
Then h is false and each b; is true in /.
Thus h can be added to C.
Contradiction to C being the fixed point.

[is called a Minimal Model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 11/20

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 12 /20

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 12 /20

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.

@ Thus g is true in the minimal model.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 12 /20

Completeness

If KB =g then KB+ g.
@ Suppose KB |= g. Then g is true in all models of KB.
@ Thus g is true in the minimal model.
@ Thus g is in the fixed point.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 12 /20

Completeness

If KB =g then KB+ g.
Suppose KB |= g. Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.
Thus KB - g.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 12 /20

Clicker Question

Suppose there at some atom aaa such that
KB F aaa and

KB - aaa.

What can be inferred?

A The proof procedure is not sound

B The proof prodecure is not complete

C The proof procedure is sound and complete

D The proof procedure is either sound or complete
E None of the above

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 13/20

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes<—airNa A ...Nan

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 14 /20

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes<—airNa A ...Nan

The SLD Resolution of this answer clause on atom a; with the
clause:

aj < b1 A .../\bp
is the answer clause

yes < aiA...Naj—1 A bi/A--- Abp A aj1/A\ - - Nam.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 14 /20

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes<—airNa A ...Nan

The SLD Resolution of this answer clause on atom a; with the
clause:

aj < b1 A .../\bp
is the answer clause

yes < aiA...Naj—1 A bi/A--- Abp A aj1/A\ - - Nam.

An atomic fact in the knowledge base is considered as a clause
where p = 0.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 14 /20

Derivations

@ An answer is an answer clause with m = 0.
That is, it is the answer clause yes < .

@ A derivation of query “?g1 A ... A qx” from KB is a sequence
of answer clauses g, Y1, - - -, Vn such that

P~ is the answer clause yes <— g1 A ... A gk
P ~; is obtained by resolving ~;_1 with a clause in KB
P> ~, is an answer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 15/20

Top-down definite clause interpreter

To solve the query 7g1 A ... A qk:

ac:="yes<—q1 A ... ANqgy"
repeat
select atom a; from the body of ac
choose clause C from KB with a; as head
replace a; in the body of ac by the body of C
until ac is an answer.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Nondeterministic Choice

@ Don't-care nondeterminism If one selection doesn't lead to a
solution, there is no point trying other alternatives.
“select”

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 17 /20

Nondeterministic Choice

@ Don't-care nondeterminism If one selection doesn’t lead to a
solution, there is no point trying other alternatives.
“select”

@ Don't-know nondeterminism If one choice doesn't lead to a
solution, other choices may.
choose

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 17 /20

Example: successful derivation

a+ bAc. a<eNnf. b+ f Ak.

c <+ e. d + k. e.

f+jAe. f+c. j+c.
Query: ?a

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 18 /20

Example: successful derivation

a+ bAc. a<eNnf. b+ f Ak.

c <+ e. d + k. e.

f+jAe. f+c. j+c.
Query: ?a

Yo: yes < a Y4 yes <+ e

v1: yes<—eAf V5 1 yes —

Yo : yes < f
V3 yes < ¢

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2

Example: failing derivation

a+ bAc. a<eNnf. b+ f Ak.

c <+ e. d + k. e.

f+jAe. f+c. j+c.
Query: ?a

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 19/20

Example: failing derivation

a+ bAc. a< eANf. b+« fAk.
Cc+e. d + k. e.
f+jAe. f+c. j+c.

Query: ?a
Yo: yes<—a Y4 yes<—eANkAc
v1: yes< bAc Y5 yes< kAc

Yo yes+— fAkAcC
v3: yes<—cANkAc

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 19/20

Search Graph for SLD Resolution

yes<—a\d
l yes«—hN\d
yese—bNeNd yesc—gNd
yesmhd yes<—mNd
yes«—jAcNd
a+bAc. a<+g. yesckNchd yesefhd
a<+ h. b+ j.
b k. dem yes—mNd yes<—p/Nd
d <« p. f < m. yes«—mcNd yes—d
sf < p. g < m.
g+« f. k < m. yese—m yes<p
h+ m. p.
7and yese—

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 5.2 20/20

