Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
 - an atom or
 - ▶ the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
 - an atom or
 - ▶ the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
 - an atom or
 - ▶ the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

A knowledge base or logic program is a set of definite clauses.

Propositional definite clauses are a resticited form of propostions that can't represent disjunction of atoms:

- A body is either
 - an atom or
 - ▶ the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where h is an atom and b is a body.
 - An atomic fact is treated as a rule with an empty body.
- A knowledge base or logic program is a set of definite clauses.
- A qeury is a body that is asked of a knowledge base.

Electrical Environment

Representing the Electrical Environment

	$\textit{lit_l}_1 \leftarrow \textit{live_w}_0 \land \textit{ok_l}_1$
$\mathit{light}_{-\mathit{l}_1}.$	$live_w_0 \leftarrow live_w_1 \land up_s_2.$
$light_{-}l_{2}.$	$live_w_0 \leftarrow live_w_2 \land down_s_2$.
$down_s_1$.	$live_w_1 \leftarrow live_w_3 \land up_s_1.$
up_s ₂ .	$live_w_2 \leftarrow live_w_3 \land down_s_1$.
up_s ₃ .	$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}.$
okl_1 .	$live_w_4 \leftarrow live_w_3 \wedge up_s_3$.
$ok_{-}l_{2}$.	$live_p_1 \leftarrow live_w_3$.
ok_cb_1 .	$live_w_3 \leftarrow live_w_5 \land ok_cb_1.$
ok_cb_2 .	$livep_2 \leftarrow livew_6$.
live_outside.	$live_w_6 \leftarrow live_w_5 \land ok_cb_2.$
	$live_w_5 \leftarrow live_outside$.

 A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - ▶ If a sound proof procedure produces a result, the result is correct.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - ▶ If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - ▶ If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.
 - ► A complete proof procedure can produce all results.

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic Proof sketch:

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement "this statement cannot be proven".

If it is true then

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

Consider the statement "this statement cannot be proven".

• If it is true then system is incomplete.

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.
- the state of a computer can be seen as a (big) integer, and all operations as arithmetic operations

Gödel's incompleteness theorem [1930]:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.
- the state of a computer can be seen as a (big) integer, and all operations as arithmetic operations
- We can write a proof system that can represent that statement in a computer.

Bottom-up Proof Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land ... \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

This is forward chaining on this clause. (An atomic fact is treated as a clause with empty body (m = 0).)

Bottom-up proof procedure

```
\mathit{KB} \vdash g \text{ if } g \in \mathit{C} \text{ at the end of this procedure:}
\mathit{C} := \{\};
\mathit{repeat}
\mathit{select} \text{ fact } h \text{ or rule } "h \leftarrow b_1 \land \ldots \land b_m" \text{ in } \mathit{KB} \text{ such that}
b_i \in \mathit{C} \text{ for all } i, \text{ and}
h \notin \mathit{C};
\mathit{C} := \mathit{C} \cup \{h\}
\mathit{until} \text{ no more clauses can be selected.}
```

Example

- $a \leftarrow b \land c$.
- $a \leftarrow e \wedge f$.
- $b \leftarrow f \wedge k$.
- $c \leftarrow e$.
- $d \leftarrow k$.
- e.
- $f \leftarrow j \land e$.
- $f \leftarrow c$.
- $j \leftarrow c$.

Clicker Question

Consider the knowledge base KB:

```
happy \leftarrow good. foo \leftarrow bar \land fun. happy \leftarrow green. bar \leftarrow zed. zed.
```

What is the final consequence set in the bottom-up proof procedure run on KB?

- A {happy, good, green, foo, bar, fun, zed}
- $B \{happy, good, green, foo, bar, zed\}$
- C {happy, green, bar, zed}
- D {green, bar, zed}
- E None of the above

If $KB \vdash g$ then $KB \models g$.

• Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 - Suppose *h* isn't true in model *I* of *KB*.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each b_i is in C, and so

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each b_i is in C, and so true in I.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each b_i is in C, and so true in I. h is false in I (by assumption)

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each b_i is in C, and so true in I. h is false in I (by assumption) So this clause is false in I.

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where each b_i is in C, and so true in I. h is false in I (by assumption) So this clause is false in I. Therefore I isn't a model of KB.

Contradiction. Therefore there cannot be such a g.

Fixed Point

• The *C* generated at the end of the bottom-up algorithm is called a fixed point.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB. Proof: suppose $h \leftarrow b_1 \wedge \ldots \wedge b_m$ in KB is false in I.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I. Then h is false and each b_i is true in I.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I. Then h is false and each b_i is true in I. Thus h can be added to C.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*.

Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I.

Then h is false and each b_i is true in I.

Thus h can be added to C.

Contradiction to *C* being the fixed point.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB.
 Proof: suppose h ← b₁ ∧ ... ∧ b_m in KB is false in I.
 Then h is false and each b_i is true in I.
 Thus h can be added to C.
 Contradiction to C being the fixed point.
- I is called a Minimal Model.

If $KB \models g$ then $KB \vdash g$.

• Suppose $KB \models g$.

If $KB \models g$ then $KB \vdash g$.

• Suppose $KB \models g$. Then g is true in all models of KB.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

Clicker Question

Suppose there at some atom aaa such that

 $KB \vdash aaa \text{ and }$

 $KB \not\models aaa$.

What can be inferred?

- A The proof procedure is not sound
- B The proof prodecure is not complete
- C The proof procedure is sound and complete
- D The proof procedure is either sound or complete
- E None of the above

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of *KB*.

An answer clause is of the form:

$$yes \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$$

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of *KB*.

An answer clause is of the form:

$$yes \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$$

The SLD Resolution of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \wedge ... \wedge a_{i-1} \wedge b_1 \wedge \cdots \wedge b_p \wedge a_{i+1} \wedge \cdots \wedge a_m.$$

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

$$yes \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$$

The SLD Resolution of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \wedge ... \wedge a_{i-1} \wedge b_1 \wedge \cdots \wedge b_p \wedge a_{i+1} \wedge \cdots \wedge a_m.$$

An atomic fact in the knowledge base is considered as a clause where p = 0.

Derivations

- An answer is an answer clause with m = 0. That is, it is the answer clause $yes \leftarrow$.
- A derivation of query " $?q_1 \wedge ... \wedge q_k$ " from KB is a sequence of answer clauses $\gamma_0, \gamma_1, ..., \gamma_n$ such that
 - $ightharpoonup \gamma_0$ is the answer clause $yes \leftarrow q_1 \wedge \ldots \wedge q_k$
 - $\triangleright \gamma_i$ is obtained by resolving γ_{i-1} with a clause in KB
 - $ightharpoonup \gamma_n$ is an answer.

Top-down definite clause interpreter

To solve the query $?q_1 \wedge \ldots \wedge q_k$: $ac := "yes \leftarrow q_1 \wedge \ldots \wedge q_k"$ repeat $\textbf{select} \text{ atom } a_i \text{ from the body of } ac$ $\textbf{choose} \text{ clause } C \text{ from } KB \text{ with } a_i \text{ as head}$ $\text{replace } a_i \text{ in the body of } ac \text{ by the body of } C$ until ac is an answer.

Nondeterministic Choice

 Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
 "select"

Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
 "select"
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may.
 choose

Example: successful derivation

$$a \leftarrow b \wedge c.$$
 $a \leftarrow e \wedge f.$ $b \leftarrow f \wedge k.$ $c \leftarrow e.$ $d \leftarrow k.$ $e.$ $f \leftarrow j \wedge e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

Example: successful derivation

```
a \leftarrow b \land c. a \leftarrow e \land f. b \leftarrow f \land k.

c \leftarrow e. d \leftarrow k. e.

f \leftarrow j \land e. f \leftarrow c. j \leftarrow c.
```

Query: ?a

```
\gamma_0: yes \leftarrow a \gamma_4: yes \leftarrow e \gamma_1: yes \leftarrow e \land f \gamma_5: yes \leftarrow f \gamma_3: yes \leftarrow c
```


Example: failing derivation

$$a \leftarrow b \wedge c.$$
 $a \leftarrow e \wedge f.$ $b \leftarrow f \wedge k.$ $c \leftarrow e.$ $d \leftarrow k.$ $e.$ $f \leftarrow j \wedge e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

Example: failing derivation

$$a \leftarrow b \wedge c$$
. $a \leftarrow e \wedge f$. $b \leftarrow f \wedge k$. $c \leftarrow e$. $d \leftarrow k$. e . $f \leftarrow j \wedge e$. $f \leftarrow c$. $j \leftarrow c$.

Query: ?a

 $\begin{array}{lll} \gamma_0: & \textit{yes} \leftarrow \textit{a} & \gamma_4: & \textit{yes} \leftarrow \textit{e} \land \textit{k} \land \textit{c} \\ \gamma_1: & \textit{yes} \leftarrow \textit{b} \land \textit{c} & \gamma_5: & \textit{yes} \leftarrow \textit{k} \land \textit{c} \\ \gamma_2: & \textit{yes} \leftarrow \textit{f} \land \textit{k} \land \textit{c} \\ \gamma_3: & \textit{yes} \leftarrow \textit{c} \land \textit{k} \land \textit{c} \end{array}$

Search Graph for SLD Resolution

