- A body is either
 - an atom or
 - the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

- A body is either
 - an atom or
 - the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where h is an atom and b is a body.

An atomic fact is treated as a rule with an empty body.

- A body is either
 - an atom or
 - the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where *h* is an atom and *b* is a body.

An atomic fact is treated as a rule with an empty body.

• A knowledge base or logic program is a set of definite clauses.

- A body is either
 - an atom or
 - the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is either
 - an atomic fact: an atom or
 - ▶ a rule: of the form $h \leftarrow b$ where *h* is an atom and *b* is a body.

An atomic fact is treated as a rule with an empty body.

- A knowledge base or logic program is a set of definite clauses.
- A qeury is a body that is asked of a knowledge base.

Electrical Environment

< 🗆 .

Representing the Electrical Environment

	$\textit{lit}_\textit{l}_1 \leftarrow \textit{live}_w_0 \land \textit{ok}_\textit{l}_1$
$light_l_1$.	$\mathit{live}_w_0 \leftarrow \mathit{live}_w_1 \land \mathit{up}_s_2.$
$light_{-}l_{2}$.	$\mathit{live}_{-}w_0 \leftarrow \mathit{live}_{-}w_2 \wedge \mathit{down}_{-}s_2.$
$down_s_1$.	$\mathit{live}_w_1 \leftarrow \mathit{live}_w_3 \land \mathit{up}_s_1.$
<i>up_s</i> ₂ .	$\mathit{live_w_2} \leftarrow \mathit{live_w_3} \land \mathit{down_s_1}.$
<i>up_s</i> ₃ .	$lit_l_2 \leftarrow live_w_4 \wedge ok_l_2.$
ok_l1.	$\mathit{live_w_4} \leftarrow \mathit{live_w_3} \land \mathit{up_s_3}.$
ok_l₂.	$live_p_1 \leftarrow live_w_3.$
$ok_{-}cb_{1}.$	$\mathit{live_w_3} \leftarrow \mathit{live_w_5} \land \mathit{ok_cb_1}.$
$ok_{-}cb_{2}.$	$live_p_2 \leftarrow live_w_6.$
live_outside.	$\mathit{live_w_6} \leftarrow \mathit{live_w_5} \land \mathit{ok_cb_2}.$
	$live_w_5 \leftarrow live_outside.$

• A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.
- Recall $KB \models g$ means g is true in all models of KB.

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - If a sound proof procedure produces a result, the result is correct.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, *KB* ⊢ *g* means *g* can be derived from knowledge base *KB*.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
 - If a sound proof procedure produces a result, the result is correct.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.
 - A complete proof procedure can produce all results.

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

```
Gödel's incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
```

Proof sketch:

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

```
    If it is true then
```

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

Consider the statement "this statement cannot be proven".

• If it is true then system is incomplete.

No proof system for a sufficiently rich logic can be both sound and complete.

sufficiently rich = can represent arithmetic

Proof sketch:

- If it is true then system is incomplete.
- If it is false then

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.
- the state of a computer can be seen as a (big) integer, and all operations as arithmetic operations

No proof system for a sufficiently rich logic can be both sound and complete.

```
sufficiently rich = can represent arithmetic
```

Proof sketch:

Consider the statement "this statement cannot be proven".

- If it is true then system is incomplete.
- If it is false then system is unsound.
- The alternative is that statement cannot be represented.
- the state of a computer can be seen as a (big) integer, and all operations as arithmetic operations
- We can write a proof system that can represent that statement in a computer.

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

This is forward chaining on this clause. (An atomic fact is treated as a clause with empty body (m = 0).) $KB \vdash g$ if $g \in C$ at the end of this procedure:

 $C := \{\};$

repeat

select fact h or rule " $h \leftarrow b_1 \land \ldots \land b_m$ " in KB such that $b_i \in C$ for all *i*, and $h \notin C$; $C := C \cup \{h\}$

until no more clauses can be selected.

 $a \leftarrow b \wedge c$. $a \leftarrow e \wedge f$. $b \leftarrow f \wedge k$. $c \leftarrow e$. $d \leftarrow k$. е. $f \leftarrow j \land e$. $f \leftarrow c$. $i \leftarrow c$.

Image: Ima

Consider the knowledge base KB:

 $\begin{array}{ll} happy \leftarrow good. & foo \leftarrow bar \wedge fun. \\ happy \leftarrow green. & bar \leftarrow zed. \\ green. & zed. \end{array}$

What is the final consequence set in the bottom-up proof procedure run on KB?

- A {happy, good, green, foo, bar, fun, zed}
- B {happy, good, green, foo, bar, zed}
- C {happy, green, bar, zed}
- $\mathsf{D} \ \{\textit{green},\textit{bar},\textit{zed}\}$
- E None of the above

• Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to *C* that isn't true in every model of *KB*. Call it *h*. Suppose *h* isn't true in model *I* of *KB*.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to *C* that isn't true in every model of *KB*. Call it *h*. Suppose *h* isn't true in model *I* of *KB*.
- h was added to C, so there must be a clause in KB

 $h \leftarrow b_1 \land \ldots \land b_m$

where each b_i is in C, and so

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to *C* that isn't true in every model of *KB*. Call it *h*. Suppose *h* isn't true in model *I* of *KB*.
- h was added to C, so there must be a clause in KB

 $h \leftarrow b_1 \land \ldots \land b_m$

where each b_i is in C, and so true in I.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to *C* that isn't true in every model of *KB*. Call it *h*. Suppose *h* isn't true in model *I* of *KB*.
- h was added to C, so there must be a clause in KB

 $h \leftarrow b_1 \land \ldots \land b_m$

where each b_i is in C, and so true in I. h is false in I (by assumption)

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to *C* that isn't true in every model of *KB*. Call it *h*. Suppose *h* isn't true in model *I* of *KB*.
- h was added to C, so there must be a clause in KB

 $h \leftarrow b_1 \land \ldots \land b_m$

where each b_i is in C, and so true in I. h is false in I (by assumption) So this clause is false in I.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h.
 Suppose h isn't true in model I of KB.
- h was added to C, so there must be a clause in KB

 $h \leftarrow b_1 \land \ldots \land b_m$

where each b_i is in C, and so true in I. h is false in I (by assumption) So this clause is false in I. Therefore I isn't a model of KB.

• Contradiction. Therefore there cannot be such a g.

• The *C* generated at the end of the bottom-up algorithm is called a fixed point.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.

0

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: I is a model of KB.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h* is false and each b_i is true in *I*.

< 🗆 I

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*.
 Proof: suppose *h* ← *b*₁ ∧ ... ∧ *b_m* in *KB* is false in *I*.
 Then *h* is false and each *b_i* is true in *I*.
 Thus *h* can be added to *C*.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*.
 Proof: suppose *h* ← *b*₁ ∧ ... ∧ *b_m* in *KB* is false in *I*.
 Then *h* is false and each *b_i* is true in *I*.
 Thus *h* can be added to *C*.
 Contradiction to *C* being the fixed point.

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- Claim: *I* is a model of *KB*. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h* is false and each b_i is true in *I*. Thus *h* can be added to *C*. Contradiction to *C* being the fixed point.
- *I* is called a Minimal Model.

• Suppose $KB \models g$.

• Suppose $KB \models g$. Then g is true in all models of KB.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

Suppose there at some atom *aaa* such that $KB \vdash aaa$ and $KB \not\models aaa$. What can be inferred?

- A The proof procedure is not sound
- B The proof prodecure is not complete
- C The proof procedure is sound and complete
- D The proof procedure is either sound or complete
- E None of the above

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

 $yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

 $yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$

The SLD Resolution of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \land \ldots \land b_p$$

is the answer clause

 $yes \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \cdots \land b_p \land a_{i+1} \land \cdots \land a_m.$

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

 $yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$

The SLD Resolution of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \land \ldots \land b_p$$

is the answer clause

 $yes \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \cdots \land b_p \land a_{i+1} \land \cdots \land a_m.$

An atomic fact in the knowledge base is considered as a clause where p = 0.

- An answer is an answer clause with m = 0. That is, it is the answer clause yes ← .
- A derivation of query "?q₁ ∧ ... ∧ q_k" from KB is a sequence of answer clauses γ₀, γ₁, ..., γ_n such that
 - γ_0 is the answer clause $yes \leftarrow q_1 \land \ldots \land q_k$
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB
 - $\triangleright \gamma_n$ is an answer.

To solve the query $?q_1 \land \ldots \land q_k$:

$$ac := "yes \leftarrow q_1 \land \ldots \land q_k"$$

repeat

select atom ai from the body of ac
choose clause C from KB with ai as head
replace ai in the body of ac by the body of C
until ac is an answer.

 Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
 "select"

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
 "select"
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example: successful derivation

$$\begin{array}{lll} a \leftarrow b \wedge c. & a \leftarrow e \wedge f. & b \leftarrow f \wedge k. \\ c \leftarrow e. & d \leftarrow k. & e. \\ f \leftarrow j \wedge e. & f \leftarrow c. & j \leftarrow c. \end{array}$$

Query: ?a

Example: successful derivation

$$\begin{array}{lll} a \leftarrow b \wedge c. & a \leftarrow e \wedge f. & b \leftarrow f \wedge k. \\ c \leftarrow e. & d \leftarrow k. & e. \\ f \leftarrow j \wedge e. & f \leftarrow c. & j \leftarrow c. \end{array}$$

Query: ?a

Example: failing derivation

$$a \leftarrow b \land c.$$
 $a \leftarrow e \land f.$ $b \leftarrow f \land k.$ $c \leftarrow e.$ $d \leftarrow k.$ $e.$ $f \leftarrow j \land e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

Query: ?a

< 🗆 I

Search Graph for SLD Resolution

