Logic and Propositions

"Consequently he who wishes to attain to human perfection, must therefore first study Logic, next the various branches of Mathematics in their proper order, then Physics, and lastly Metaphysics."

Maimonides 1135-1204

Propositions

- A proposition is a sentence, written in a language, that has a truth value - it is true or false - in a world. A proposition is built from atomic propositions (atoms) and logical connectives.

Propositions

- A proposition is a sentence, written in a language, that has a truth value - it is true or false - in a world. A proposition is built from atomic propositions (atoms) and logical connectives.
- Propositions can be built from simpler propositions using logical connectives.

Propositional Calculus Syntax

- An atomic proposition - atom - is a symbol, written as sequences of letters, digits, and the underscore (_) and start with a lower-case letter.
E.g., a, ai_is_fun, lit_I_, live_outside, mimsy, sunny.

Propositional Calculus Syntax

- An atomic proposition - atom - is a symbol, written as sequences of letters, digits, and the underscore (_) and start with a lower-case letter.
E.g., a, ai_is_fun, lit_l_, live_outside, mimsy, sunny.
- A proposition or logical formula is either
- an atomic proposition or
- a compound proposition of the form

$\neg p$	"not p "	negation of p
$p \wedge q$	" p and q "	conjunction of p and q
$p \vee q$	" p or q "	disjunction of p and q
$p \rightarrow q$	" p implies q "	implication of q from p
$p \leftarrow q$	" p if q "	implication of p from q
$p \leftrightarrow q$	" p if and only if q "	equivalence of p and q
$p \oplus q$	" p XOR q "	exclusive-or of p and q

where p and q are propositions.

Propositional Calculus Syntax

- An atomic proposition - atom - is a symbol, written as sequences of letters, digits, and the underscore (_) and start with a lower-case letter.
E.g., a, ai_is_fun, lit_l_, live_outside, mimsy, sunny.
- A proposition or logical formula is either
- an atomic proposition or
- a compound proposition of the form

$\neg p$	"not p "	negation of p
$p \wedge q$	" p and q "	conjunction of p and q
$p \vee q$	" p or q "	disjunction of p and q
$p \rightarrow q$	" p implies q "	implication of q from p
$p \leftarrow q$	" p if q "	implication of p from q
$p \leftrightarrow q$	" p if and only if q "	equivalence of p and q
$p \oplus q$	" p XOR q "	exclusive-or of p and q

where p and q are propositions.

- The operators $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow$, and \oplus are logical connectives.

Why propositions?

- Logical formulae are modular statements of what is (known to be) true

Why propositions?

- Logical formulae are modular statements of what is (known to be) true
- It is easier to check correctness and debug formulae than tables of what could be true

Why propositions?

- Logical formulae are modular statements of what is (known to be) true
- It is easier to check correctness and debug formulae than tables of what could be true
- We can exploit the Boolean nature for efficient reasoning

Why propositions?

- Logical formulae are modular statements of what is (known to be) true
- It is easier to check correctness and debug formulae than tables of what could be true
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable

Why propositions?

- Logical formulae are modular statements of what is (known to be) true
- It is easier to check correctness and debug formulae than tables of what could be true
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae

Why propositions?

- Logical formulae are modular statements of what is (known to be) true
- It is easier to check correctness and debug formulae than tables of what could be true
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae
- It can be extended to infinitely many propositions with infinite domains (using logical quantification)

Semantics of the Propositional Calculus

- An interpretation - or possible world - is an assignment of true or false to each variable.

Semantics of the Propositional Calculus

- An interpretation - or possible world - is an assignment of true or false to each variable.
- An interpretation is defined by function π that maps atoms to \{true, false\}.
If $\pi(a)=$ true, atom a is true in the interpretation.
If $\pi(a)=$ false, atom a is false in the interpretation.

Semantics of the Propositional Calculus

- An interpretation - or possible world - is an assignment of true or false to each variable.
- An interpretation is defined by function π that maps atoms to \{true, false\}.
If $\pi(a)=$ true, atom a is true in the interpretation.
If $\pi(a)=f a l s e$, atom a is false in the interpretation.
- Truth of a compound proposition in an interpretation is defined in terms of the truth of its components:

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftarrow q$	$p \leftrightarrow q$	$p \oplus q$
true	true	false	true	true	true	true	true	false
true	false	false	false	true	false	true	false	true
false	true	true	false	true	true	false	false	true
false	false	true	false	false	true	true	true	false

- Propositions can have different truth values in different interpretations.

Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If $K B$ is a set of propositions, proposition g is a logical consequence of $K B$, written $K B \models g$, if g is true in every model of $K B$.
- That is, $K B \models g$ if there is no interpretation in which $K B$ is true and g is false.

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night
I_{1}	true	true	true	true
I_{2}	false	false	false	false
I_{3}	true	true	false	false
I_{4}	false	false	true	true
I_{5}	true	false	true	true

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night
I_{1}	true	true	true	true
I_{2}	false	false	false	false
I_{3}	true	true	false	false
I_{4}	false	false	true	true
I_{5}	true	false	true	true

model of $K B$? yes

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night
I_{1}	true	true	true	true
I_{2}	false	false	false	false
I_{3}	true	true	false	false
I_{4}	false	false	true	true
I_{5}	true	false	true	true

model of $K B$? yes
no

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night	model of $K B$?
I_{1}	true	true	true	true	yes
I_{2}	false	false	false	false	no
I_{3}	true	true	false	false	no
I_{4}	false	false	true	true	
I_{5}	true	false	true	true	

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night	model of $K B$?
I_{1}	true	true	true	true	yes
I_{2}	false	false	false	false	no
I_{3}	true	true	false	false	no
I_{4}	false	false	true	true	yes
I_{5}	true	false	true	true	

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_on } \leftarrow \text { night } . \\
\text { night } .
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night	model of $K B$?
I_{1}	true	true	true	true	yes
I_{2}	false	false	false	false	no
I_{3}	true	true	false	false	no
I_{4}	false	false	true	true	yes
I_{5}	true	false	true	true	yes

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } . \\
\text { light_o } \leftarrow \text { night } . \\
\text { night }
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night	model of $K B$?
I_{1}	true	true	true	true	yes
I_{2}	false	false	false	false	no
I_{3}	true	true	false	false	no
I_{4}	false	false	true	true	yes
I_{5}	true	false	true	true	yes

Which of apple_eaten, bird_eats_apple, light_on, night logically follow from KB?

Simple Example

$$
K B=\left\{\begin{array}{l}
\text { apple_eaten } \leftarrow \text { bird_eats_apple } \\
\text { light_o } \leftarrow \text { night } . \\
\text { night }
\end{array}\right.
$$

	apple_eaten	bird_eats_apple	light_on	night	model of $K B$?
I_{1}	true	true	true	true	yes
I_{2}	false	false	false	false	no
I_{3}	true	true	false	false	no
I_{4}	false	false	true	true	yes
I_{5}	true	false	true	true	yes

Which of apple_eaten, bird_eats_apple, light_on, night logically follow from KB ?
$K B \models$ light_on, $K B \models$ night,
$K B \not \vDash$ apple_eaten, $K B \not \vDash$ bird_eats_apple

Human's view of semantics

Step 1 Begin with a task domain.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

- The system can tell you whether the question is a logical consequence.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

- The system can tell you whether the question is a logical consequence.
- You can interpret the answer with the meaning associated with the atoms.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \vDash g$ then g

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \neq g$ then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \neq g$ then g must be true in the intended interpretation.
- If $K B \notin g$ then

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \neq g$ then g must be true in the intended interpretation.
- If $K B \not \vDash g$ then there is a model of $K B$ in which g is false. This could be the intended interpretation.

Electrical Environment

Role of semantics

In computer:

$$
\begin{aligned}
& \text { light2_broken } \leftarrow \text { power_in_w_3 } \\
& \quad \wedge \text { sw_3_up } \wedge \text { unlit_light2. } \\
& \text { sw_3_up. } \\
& \text { power_in_w_3 } \leftarrow \text { power_in_p_1. } \\
& \text { unlit_light2. } \\
& \text { power_in_p_1. }
\end{aligned}
$$

In user's mind:

- light2_broken: light \#2 is broken
- sw_3_up: switch 3 is up
- power_in_w_3: there is power in wire 3
- unlit_light2: light \#2 isn't lit
- power_in_p_1: outlet p_1 has power

Role of semantics

In computer:

$$
\begin{aligned}
& \text { light2_broken } \leftarrow \text { power_in_w_3 } \\
& \quad \wedge \text { sw_3_up } \wedge \text { unlit_light2. } \\
& \text { sw_3_up. } \\
& \text { power_in_w_3 } \leftarrow \text { power_in_p_1. } \\
& \text { unlit_light2. } \\
& \text { power_in_p_1. }
\end{aligned}
$$

In user's mind:

- light2_broken: light \#2 is broken
- sw_3_up: switch 3 is up
- power_in_w_3: there is power in wire 3
- unlit_light2: light \#2 isn't lit
- power_in_p_1: outlet p_1 has power

Conclusion: light2_broken

Role of semantics

In computer:

$$
\begin{aligned}
& \text { light2_broken } \leftarrow \text { power_in_w_3 } \\
& \quad \wedge \text { sw_3_up } \wedge \text { unlit_light2. } \\
& \text { sw_3_up. } \\
& \text { power_in_w_3 } \leftarrow \text { power_in_p_1. } \\
& \text { unlit_light2. } \\
& \text { power_in_p_1. }
\end{aligned}
$$

In user's mind:

- light2_broken: light \#2 is broken
- sw_3_up: switch 3 is up
- power_in_w_3: there is power in wire 3
- unlit_light2: light \#2 isn't lit
- power_in_p_1: outlet p_1 has power

Conclusion: light2_broken

- The computer doesn't know the meaning of the symbols
- The user can interpret symbols using their meaning

